Course Outcomes and Program Outcomes

3.1. The correlation between the Course and the Program Outcomes(POs)& Program Specific Outcomes(25)

The course outcomes and CO-PO Mapping for few of the courses are given below

Syllabus and Their Course Outcomes (One from each semester)

3ANU1: MECHANICS OF SOLIDS

B.TECH (Aeronautical) 3rd semester

3ANU1	CONTENTS	HOURS
	Introduction: Concept of stress, axial loading normal stress, shearing stress, bearing	
	stress, stress on an oblique plane under axial loading; Concept of strain, normal strain	
	under axial loading; Stress-strain diagrams; Hooke's law for 2D and 3D cases;	
	Modulus of elasticity, Poisson's ratio, bulk modulus, modulus of rigidity, shearing	
	strain; Thermal stresses.	
	Transformation of Stress and Strain: Principal stresses, maximum shearing stress;	
	Mohr's circle for stress and strain; Stresses in thick and thin-walled pressure vessels.	
	Stresses in Beams: Shear force and bending moment diagrams for simply supported	
	and cantilever beams with concentrated, uniformly distributed and variable loads;	
	Theory of pure bending; Bending stress variation in cross-section; Transverse shear	
	stress and its distribution in different sections; Composite beam.	
	Deflection of Beams: Deflection in simply supported beams and cantilever with	
	concentrated loads, uniformly distributed loads and their combination.	
	Columns: Buckling of columns, differential equation approach, energy approach,	
	approximate techniques; Euler's formula for pin-ended columns and its extension to	
	columns with other end conditions; Concept of equivalent length; Eccentric loading;	
	Rankine formula and other empirical relations.	
	Torsion: Deformation in a circular shaft, angle of twist; Stresses due to torsion;	
	Torsion in composite shafts; Saint-Venant's theorem.	
	TOTAL	40

	TEXT BOOKS	Year
1	"Advanced Engineering Mathematics", R.K. Jain &S.R.K. Iyengar, Narosa Publications	2008
2	"Advanced Engineering Mathematics", O'Neil, Cengage Learning India	2011
	REFERENCE BOOKS	
S.NO.	Name of authors/Books/publishers	Year
1.	"Advanced Engineering Mathematics", E. Kreyszig, Wiley	2010
2.	"Advanced Engineering Mathematics", M. Greenberg, Pearson Education	2013
3.	"Advanced Engineering Mathematics", D.G.Zill& W.S. Wright, Jones & Bartlett India Private Limited	2012
4.	"Higher Engineering Mathematics", B.V. Ramana, McGraw Hill Education	2017

Course	Course	Course	Detail
Code	Name	Outcome	
	SOLIDS	C01	Explain the fundamental concept of stress and strain, and the relationship between both in order to solve problems on principle of superposition, compound bars and thermal Stresses.
3ANU1	OF	C02	Apply the theory of simple bending to seek solution related to the pure and non-uniform bending of beams.
34	ANIC	C03	Analyze the members/structure subjected to combined loading and identify the principal planes/stress/strain.
	MECHANICS	C04	Evaluate the torsional stress for various cases of shaft and determine buckling load for column of different end conditions.
	M	C05	Apply different methods to evaluate deflection of beam and carry out stress analysis of thin pressure vessels.

	Course	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
NG	Outcome														
ZERI S-1	C01	3	2		1										
GINI	C02	3	2		1										
ADVANCED ENGINEERING MATHEMATICS-1	C03	3	3	1	2										
	C04	3	3	1	1										
DVA	C05	3	3	1	2										
A	Average	3	2.6	1	1.4										

3ANU2: FLUID MECHANICS

B.TECH (Aeronautical) 3rd semester

3ANU2	CONTENTS	HOURS
	Fluid Properties: Concept of fluid and flow, ideal and real fluids, continuum concept;	
	Pressure, density, specific gravity, viscosity, compressibility, specific heats, capillarity	
	and surface tension; Newtonian and non-Newtonian fluids.	
	Fluid Statics : Pascal's law; Hydrostatic equation; Principle of barometer and manometer; Buoyancy.	
	Fluid Kinematics: Eulerian and Lagrangian description of fluid flow; System and control volume concept; Stream, streak and path line, equation of streamline, different types of flows; Conservation of mass in a control volume; Differential equation of continuity; Acceleration, rotation and strain rate of a fluid particle. Fluid Dynamics: Linear and angular momentum conservation equation in integral form; Euler's equation; Parnoulli's equation; Conservation of energy; Flow measuring	
	form; Euler's equation; Bernoulli's equation; Conservation of energy; Flow measuring devices – orifice meter, venturimeter, pitot tube.	
	Viscous Flow: Navier-Stokes equation, unidirectional flow between stationary and moving parallel plates, flow through pipes, Hagen-Poiseuille law; Reynolds number and its significance.	
	Introduction to Turbulent Flows : Reynolds experiment, laminar to turbulent transition; Reynolds decomposition; Shear stress in turbulent flow, eddy viscosity; Prandtl's mixing length hypothesis.	
	Boundary Layer : Boundary layer concept; Displacement, momentum and energy thickness; Laminar and turbulent boundary layer flows; Boundary layer separation and control, streamlined and bluff bodies, lift and drag on cylinder and airfoil.	
	Dimensional Analysis : Fundamental and derived units and dimensions; Dimensional homogeneity; Dimensional analysis using Rayleigh method & Buckingham-Π theorem; Significance of dimensionless group, use of dimensionless groups in experimental investigation; Geometric, kinematic and dynamic similarity, model testing; Derivations and applications of important dimensionless numbers.	
	TOTAL	40
	TEXT BOOKS	Year
1	"Fluid Mechanics", F.M. White, McGraw Hill Publishing Company Ltd.	1991

2	"Fluid Mechanics: Fundamentals and Applications", Y.A. Cengel & J.M. Cimbala, McGraw Hill Education	2006
	REFERENCE BOOKS	
S.NO.	Name of authors/Books/publishers	Year
1.	"Mechanics of Fluids", I.H. Shames, McGraw Hill Publishing Company Ltd.	1993
2.	"Fluid Mechanics", P.K. Kundu and I.M. Cohen, Academic Press	2011
3.	"Fluid Mechanics", J. F. Douglas, Pearson education	2005
4.	"Introduction to Fluid Mechanics", J.A. Fay, MIT Press	2017

Course	Course	Course	Detail
Code	Name	Outcome	
	S	C01	Apply the basic equation of fluid statics to determine forces on planar and curved surfaces that are submerged in a static fluid.
77	UID MECHANICS	C02	Apply conservation laws to determine velocities, pressures, and accelerations for incompressible and inviscid fluids.
3ANU2	MEC	C03	Apply principles of dimensional analysis to identify non dimensional parameters.
		C04	Explain the concepts of viscous boundary layers.
	FL	C05	Apply principles of impacts of jets in fluid machineries.
		CO6	Measure coefficient of discharge of fluid flows.

	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
S	C01	3	2									3			
FLUID MECHANICS	C02	3	2		3						2				
ECH	C03	3	2									3		2	
ID M	C04		2									3		2	
FLU	C05	3	2									3	2		
	CO6	3			3	1								3	
	Average	3	2		3	1					2	3	2	2.33	

3ANU3: INTRODUCTION TO AERONAUTICS

B.TECH (Aeronautical) 3rd semester

3ANU3	CONTENTS	HOURS
	History of Aviation: Brief history of flight vehicle development with emphasis on key ideas, Indian aerospace activities; Aerospace applications.	
	Aircraft Configurations: Classification of aircraft and space vehicles; Functions of major components of airplane; Different types of flight vehicles; V/STOL configurations; Basic flight instruments.	
	Standard Atmosphere: Physical properties and structure of atmosphere; Geometric and geopotential altitude; Hydrostatic equation; Definition of standard atmosphere; Pressure, density & temperature altitudes.	
	Basic Aerodynamics: Introduction to principle of flight; Ideal fluid, viscous flows, laminar and turbulent flows; Flow past a body, bluff bodies versus streamlined body, concept of boundary layer, flow separation, generation of lift, drag & moment, types of drag, non-dimensional coefficients; Airfoil, airfoil geometry, flow over airfoil, centre of pressure and aerodynamic centre, airfoil families; Wings, wing planform and orientation, flow over finite wing, wingtip devices; Propagation of sound, different flight regimes, critical and drag divergence Mach number, wave drag, swept wing, delta wing. Aerospace Structures: Basic function of aircraft structure; Aircraft configuration and principle types of construction; Details of constructional features of conventional aircraft; Use of metallic, non-metallic and composite materials; Introduction to landing gears.	
	Aerospace Propulsion: Fundamental gas turbine cycle and propulsion techniques; Mechanism of thrust production in propellers and jet engines, comparative merits; Different types of aircraft engines; Principles of operation of rocket, rocket engine, typical applications, Jet Assisted Take-Off.	
	Basic Flight Mechanics: Forces and moments on airplane; Significance of L/D ratio; Aircraft Drag Polar; High lift devices; Equation of motion; Thrust and power required for steady level flight; Thrust and power available and maximum velocity for jet engine and reciprocating engine-propeller combination; Climbing flight, Absolute and service ceilings; Gliding flight; Turning flight; Concepts of stability & control; Primary and secondary control surfaces; Criteria for longitudinal static stability, neutral point; Lateral-directional stability and control; Basic manoeuvres.	
	TOTAL	40
	TEXT BOOKS	Year

1	"Introduction to Flight", J.D. Anderson, McGraw Hill Education	2010
2	"Understanding Flight", D. Anderson & S. Eberhardt, McGraw HillEducation	2000
	REFERENCE BOOKS	
S.NO.	Name of authors/Books/publishers	Year
1	"Flight without Formulae", A.C. Kermode, Pearson Education	2000
2	"Fundamentals of Flight", Richard Shepherd Shevell, Pearson Education	1989
3	"The Airplane: A History of its Technology", J.D. Anderson, AIAA	2003
4	"Flight: The Complete History of Aviation", R.G. Grant, DK Publishing	2017
5	"Introduction to Aerospace Engineering with a Flight Test Perspective", Stephen Corda, Wiley-Blackwell	2017

Course	Course	Course	Detail
Code	Name	Outcome	
		C01	Explain physical properties and structure of atmosphere.
33	ion to	C02	Correlate various basic aerodynamic parameters, and explain aerodynamic characteristics of airfoil and wing.
3ANU3	Introduction 1 Aeronautics	C03	Know basic functions of aircraft structure.
۳,	Intro	C04	Compare mechanism of thrust production in different types of aircraft engines.
		C05	Develop an understanding about performance, stability and control of aircraft.

iics	Course Outco me	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
onauí	C01	2	1											1	
on to Aeronautics	C02	3	3											3	2
	C03	2												1	
ducti	C04	3	2											2	2
Introduction	C05	3	2											2	2
	Avera ge	2.6	2.0											1.8	2

3ANU4: AIRCRAFT MATERIALS ENGINEERING

B.TECH (Aeronautical) 3rd semester

3ANU4	CONTENTS	HOURS								
	Atomic Structure of Metals: Crystal structure; Crystal lattice of BCC, FCC & HCP,									
	crystallographic notation of atomic planes and directions (Miller Indices);									
	Polymorphism and allotropy; Imperfections in crystals.									
	Theories of Plastic Deformation: Phenomenon of slip, twinning, recovery,									
	recrystallization and grain growth; Iron carbon equilibrium diagram, phase									
	transformation in the iron carbon diagram, formation of austenite, transformation of austenite into pearlite, martensite transformation in steel; TTT curves.									
	Heat Treatment Processes of Engineering Materials: Principles and applications of									
	annealing, normalizing, hardening, and tempering; Chemical heat treatment of steels – carburizing, nitriding, cyaniding, carbo-nitriding of steel.									
	Broad Classification of Engineering Materials: Ferrous materials, nonferrous									
	materials and alloys; Classification of steels, BIS standards; Ceramic materials; Fibre									
	reinforced composite materials and polymers; Maraging steels and super alloys; Effects									
	of alloying element on the structure and properties of steel, distribution of alloying									
	elements (Si, Mn, Ni, Cr, Mo, Co, W, Ti, Al)in steel.									
	Materials in Aircraft Constructions: Aluminium, titanium, copper, magnesium									
	based alloys, steels; Composite materials.									
	Corrosion: Detection and prevention; Protective coatings.									
	Testing: Destructive and non-destructive testing techniques; Crack detection;									
	Inspection of parts by hot oil and chalk, dyepenetrant,									
	fluorescent and magnetic particles, X-ray, ultrasonic, eddy current and acoustic									
	emission methods.									
	TOTAL	40								
	TEXT BOOKS	Year								
1	"Aircraft Materials and Processes", G.F. Titterton, Himalayan Books	2015								
2	"Materials Science and Engineering", W.D. Callister Jr., D.G. Rethwisch, John Wiley	2006								
	& Sons									
	REFERENCE BOOKS									
S.NO.	Name of authors/Books/publishers	Year								
1.	"Aircraft Materials and Analysis", Tariq Siddiqui, McGraw-Hill	2014								

2.	"Aircraft Materials & Processes", Dorothy Kent, Shroff Publication	1998
3.	"Materials Science and Engineering: A First Course", V. Raghavan, PHI Learning Private Limited	2015
4.	"Material Science and Engineering", W.F. Smith, J. Hashemi & R. Prakash, McGraw Hill Education	2017

Course	Course	Course	Detail
Code	Name	Outcome	
	JALS	C01	The students will realize the significance of materials in aircraft engineering.
U4	CRAFT MATERIALS ENGINEERING	C02	The students will have a knowledge of different kind of metal alloys used in aircrafts.
3ANU4	_ 	C03	The students will have a knowledge of different kind high strength and heat resistant alloys used in aircrafts.
	AIRCRAFT ENGIN	C04	The students will have a knowledge of heat treatment processes and corrosion resistance metal alloys used in aircrafts.
	ΑП	C05	The students will have a knowledge of modern materials.

S	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
RIAL	C01	3	3	2									2		
CRAFT MATERIALS ENGINEERING	C02	3	3	1	2										
	C03	3	3	1	2										
(RAF	C04	2	3	3	3	2							3		
AIRCRAFT ENGIN	C05	2		3		3							3		
	Average	2.6	3	2	2.33	2.5							2.6		

3ANU5: MANUFACTURING PROCESSES

B.TECH (Aeronautical) 3rd semester

3ANU5	CONTENTS	HOURS						
	Introduction: Importance of manufacturing, survey of manufacturing processes.							
	Foundry: Casting process; Patterns— types, materials and allowances; Types of							
	moulds; Core & core prints; Gating system; Introduction to special casting methods; Casting defects.							
	Metal Joining Processes: Principle of welding, soldering, brazing and adhesive bonding; Arc welding, TIG, MIG; Gas welding and cutting; Thermite welding; Resistance welding; Spot, projection & seam welding; Atomic hydrogen, ultrasonic, plasma, laser & electron beam welding; Friction and explosive welding; Welding defects. Forming and Shaping Processes: Metal working, elastic and plastic deformation, concept of strain hardening, hot and cold working; Rolling principle and operations; Forging, hammers and presses; Extrusion, wire and tube drawing processes; Cold working processes— shearing, drawing, squeezing, blanking, piercing, deep drawing, coining & embossing, riveting, thread rolling, bending; Metal working defects. Powder Metallurgy: Methods of powder manufacturing; Properties of metal powders; Compacting; Sintering; Applications of powder manufacturing, advantages and limitations of powder manufacturing. Rapid Prototyping Operations: Additive & subtractive processes; Introduction to							
	different additive manufacturing processes; Virtual Prototyping.							
	Plastic Technology: General properties of plastics, classification of plastics; Ingredients of moulding compounds; Introduction							
	to different plastic part manufacturing processes. TOTAL	40						
	TEXT BOOKS	Year						
1	"Manufacturing Technology", P.N. Rao, Tata McGraw Hill	2003						
2	"Manufacturing Processes for Engineering Materials", S. Kalpakjian & S.R. Schmid, Pearson Education	2018						
	REFERENCE BOOKS							
S.NO.	Name of authors/Books/publishers	Year						

1.	"Manufacturing Science", A. Ghosh & A.K. Mallik, Pearson India	2011
2.	"Introduction to Manufacturing Processes", John A. Schey, McGraw-Hill Education	2012
3.	"Elements of Manufacturing Processes", B.S. Nagendra Parashar & R.K. Mittal, PHI	2022
	Learning Private Limited	
4.	"Manufacturing Science", A. Ghosh & A.K. Mallik, Pearson India	2011

Course	Course	Course	Detail
Code	Name	Outcome	
	sses	C01	classify and introduce different primary manufacturing processes
Š.	g Processes	C02	explain principles, materials and methods of foundry technology
3ANU5	uring	C03	illustrate principles, materials and methods of forming processes
	Manufacturing	C04	explain principles, materials and methods of metal joining.
	Мап	C05	differentiate powder metallurgy process, its application from other processes.

70	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
səssən	C01	3													
Manufacturing Processes	C02	3	2	2	1										
uring	C03	3	2	2	1										
ıufacı	C04	3	2	2	1										
Man	C05	3	2	2	1										
	Average	3	2	2	1										

3ANU6: ADVANCED ENGINEERING MATHEMATICS-1

B.TECH (Aeronautical) 3rd semester

3ANU6	CONTENTS	HOURS								
	Laplace Transform: Definition and existence of Laplace transform, properties and									
	formulae, unit step function, Dirac Delta function, Heaviside function; Inverse Laplace									
	transform; Convolution theorem; Application of Laplace transform to ordinary differential equation.									
	Fourier Transform: Fourier complex, sine and cosine transform, properties and formulae; Inverse Fourier transforms, Convolution									
	theorem; Application of Fourier transforms to partial differential equation (1D heat and wave equations).									
	Z-Transform: Definition, properties and formulae; Convolution theorem; Inverse Z-transform, application of Z-transform to difference equation.									
	Numerical Analysis: Interpolation; Difference operators: forward, backward, central, shift and average operators; Newton's forward and backward interpolation formulae; Gauss's forward and backward interpolation formulae; Stirling's formula; Lagrange interpolation formula for unequal intervals; Inverse interpolation. Numerical Differentiation: Newton's, Gauss's and Stirling's formula.									
	Numerical Integration: Trapezoidal Rule; Simpson's 1/3 and 3/8 rule. Numerical Solution of ODEs of First Order: Picard's method; Euler's method; Modified Euler's method; Runge-Kutta fourth order method; Milne's method.									
	TOTAL	40								
	TEXT BOOKS	Year								
1	"Advanced Engineering Mathematics", R.K. Jain &S.R.K. Iyengar, Narosa Publications	2016								
2	"Advanced Engineering Mathematics", O'Neil, Cengage Learning India	2011								
	REFERENCE BOOKS									
S.NO.	Name of authors/Books/publishers	Year								
5.	"Advanced Engineering Mathematics", E. Kreyszig, Wiley	2010								
6.	"Advanced Engineering Mathematics", M. Greenberg, Pearson Education	2013								

7.	"Advanced Engineering Mathematics", D.G.Zill& W.S. Wright, Jones & Bartlett India	2008
	Private Limited	
8.	"Higher Engineering Mathematics", B.V. Ramana, McGraw Hill Education	2006

Course	Course	Course	Detail
Code	Name	Outcome	
	G S-1	C01	:Know the basic concepts of integral transforms (Laplace and Fourier), Z-transform and difference operators along their fundamental properties.
3ANU6	NCED EERIN MATIC	C02	Calculate the transforms of standard functions and elementary sequences, and work out numerical interpolation, differentiation and integration.
3A)	ADVA ENGIN 1ATHEN	C03	Apply the integral transforms, Z-transform and numerical methods to variety of problems, including differential, integral and difference equations.
	V	C04	Analyze the transforms and numerical tools needed to solve the practical problems in various branches of engineering.

	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
11 – 1	C01	3	2										1		
AERODYNAMICS	C02	3	2												
YNA	C03	2	3												
ROD	C04	2	3												
AEI	C05														
	Average	2.5	2.5										1		

3ANU7: INTRODUCTION TO AERONAUTICS LAB

B.TECH (Aeronautical) 3rd semester

3P

3ANU7	CONTENTS										
	Acquaintance with the concept of static stability and control										
	• Depiction of the use of aircraft primary control surfaces along with their										
	locations on aircraft										
	• Smoke visualization over cylinder and airfoil section to show boundary layer										
	separation										
	Demonstration of foldable landing gear and damping in landing gear										
	 Illustration of different types of UAVs 										
	 Review of different classes of flying vehicles 										
	 To study various types of engines used in aircraft 										
	• Discussion on Aircraft Traffic Control System along with its demonstration of										
	its working										
	 Study of constructional details of aircraft fuselage and wings 										
	• Display of different types of high lift devices and drag inducing devices										

Course Code	Course Name	Course Outcome	Detail
	o ab	C01	Familiarization with basic concepts of aeronautics.
3ANU7	Introduction to Aeronautics Lab	C02	Use of simple equipment to illustrate working of components.
3A]	Introdu	C03	Demonstration of parts of aircraft, such as wings, tails, landing gear and control surfaces.
	Ir	C04	Ability to use wind tunnel for simple experiments such as flow visualization.

Introduction to Aeronautics Lab	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
	C01	3	1	2									2		
	C02	3	2	3	1	2									
	C03	3	1	2		2									
	C04	3	2	2	2	2							1		
Int	Average	3	1.5	2.25	1.5	2							1.5		

3ANU8: FLUID MECHANICS LAB

B.TECH (Aeronautical) 3rd semester

3P

3ANU8	CONTENTS
	Determination of meta-centric height of a given body
	 Determination of Cd, Cv & Cc for given orifice
	Calibration of contracted rectangular notch and triangular notch and determination
	of flow rate
	 Determination of velocity of water by Pitot tube
	• Verification of Bernoulli's theorem
	Calibration and flow rate determination using venturimeter and orificemeter
	• Determination of head loss in given length of pipe
	• Determination of the Reynolds number for laminar, turbulent and transient flow
	in pipe
	 Determination of coefficient for minor losses in pipes
	Measurement of velocity distribution in a pipe and calculation of discharge
	• Measurement of boundary layer velocity profile over a flat plate and to determine
	the boundary layer thickness

Course	Course	Course	Detail
Code	Name	Outcome	
	CS	C01	Develop procedure for standardization of experiments.
8	CHANICS B	C02	Calibrate flow discharge measuring device used in pipes channels and tanks.
3ANU8	MECI	C03	Determine fluid and flow properties.
\ ,	FLUID	C04	Illustrate laminar and turbulent flows.
	Ŀ	C05	Test the performance parameters for flow through pipes.

В	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
FLUID MECHANICS LAB	C01	3	2	2	3	2									
ANIC	C02	3	3	2	3	3									
CH.∧	C03	3	3	2	3	3									
D M	C04	3	2	2	3	2									
FLU	C05	3	3	2	3	2									
	Average	3.0	2.6	2.0	3.0	2.4									

3ANU9: MECHANICS OF SOLIDS LAB

B.TECH (Aeronautical) 3rd semester

3P

3ANU9	CONTENTS
	Introduction to Universal Testing Machine
	Use of Izod Impact Tester to measure impact loads
	Calculation of Young's modulus of aluminum and steel
	• Determination of fracture strength and fracture pattern of ductile & brittle
	materials
	 Testing torsion load using Torsion Tester
	Measurement of buckling load for columns
	• Performing tensile test and characterizing elastic limit, strain hardening,
	necking and yield point
	• Compression testing of a metal chip and calculation of compressive strength
	Shear testing
	Bending test and determination of Young's Modulus of Elasticity via deflection
	of beam
	• Performing fatigue test on a given material and to determine its fatigue strength
	 Creep testing and its significance

Course	Course	Course	Detail
Code	Name	Outcome	
	Solids	C01	Understand the mechanical properties of materials.
3ANU9	of b	C02	Mechanical properties of materials under different types of loadings.
3A	Mechanics	C03	Ability to perform tension and compression test.
	Med	C04	Ability to perform hardness and torsion test.

Mechanics of Solids Lab	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
	C01	2	1	-	1										
	C02	2	2	1	2										
	C03	2	2	1	2										
	C04	2	2	1	2										
	Average	2	1.75	1	1.75										

3ANU10: AIRCRAFT MATERIALS LAB

B.TECH (Aeronautical) 3rd semester

3P

3ANU10	CONTENTS
	Characterization of important engineering materials and crystal structures
	 Demonstration of brittle and ductile fracture
	• Illustration of micro structures of steel using charts
	 Calculation of hardness using Rockwell Hardness Tester
	 Calculation of hardness using Brinell hardness Tester
	 Calculation of hardness using Vickers Hardness Tester VM-50
	• Heat treatment experiments such as annealing, quenching, case hardening and
	their effect on hardness
	• Effect of carbon percentage on the hardness of steel
	Study of Fe-C diagram
	• Depiction of various crystal structures and dislocations through models
	• Introduction to NDT methods

Course	Course	Course	Detail
Code	Name	Outcome	
	Lab	C01	The students will realize the significance of materials in aircraft engineering.
010	Aircraft Materials I	C02	The students will have a knowledge of different kind of metal alloys used in aircrafts.
3ANU10	ft Mai	C03	The students will have a knowledge of different kind high strength and heat resistant alloys used in aircrafts.
	vircra	C04	The students will have a knowledge of heat treatment processes and corrosion resistance metal alloys used in aircrafts.
	Ą	C05	The students will have a knowledge of modern materials.

	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
Aircraft Materials Lab	C01	3	3	2									2		
	C02	3	3	1	2										
	C03	3	3	1	2										
	C04	2	3	3	3	2							3		
	C05	2		3		3							3		
	Average	2.6	3	2	2.33	2.5							2.6		

3ANU11: PROFESSIONAL SKILL LAB

B.TECH (Aeronautical) 3rd semester

3P

3ANU11	CONTENTS
	Personality Assessment Skills: Personal SWOT analysis activities, leveraging
	personal strengths, self-evaluation, self-criticism,
	self-discipline; Mock interviews.
	Time Management Skills: Learning methodology for achieving targets and setting
	priorities.
	Conflict Management Skills: Learning negotiation and conflict resolution skills
	through simulation exercise.
	Leadership Skills: Assertiveness, innovation & creativity; Discussions on successful
	leaders and entrepreneurs.
	Motivational Skills: Motivational theories and their practical applications, ability to
	motivate self and others.
	Stress Management Skills: Practice different methods of stress management;
	Introduction to Yoga & Pranayama, use of prayer
	and meditation; Effective use of music for relieving stress and enhancing concentration
	& consistency.
	Group Dynamics: Group discussion, video samples of mock GD; Role plays; In-
	basket exercises.
	Behavioural Skills: Attitude and altitude; Lateral thinking; Psychometrics; Case
	studies and video samples.

Course Code	Course Name	Course Outcome	Detail					
	SKILL	C01	Plan the activities related to self-analysis and management.					
=	1	C02	Exercise the activities for managing and developing the various skills. such as leadership and motivational skills.					
ANU	3ANU11 PROFESSIONAI LAB		Interpret the various professional behavior and activities.					
6	FESS	C04	Prepare and develop the personality by performing different actions.					
	PRO	C05	Exercise on different methods of time management and stress management.					

Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
C01		1	1	1	1				3	2	2			
C02		1	1	1		1			3	2	2			
C03		1	1	1		1		1	2	3	1			
C04		1	1	1		1		1	2	3	2			
C05		1	1	1				1	2	3	1			
Average		1	1	1	1	1		1	2.4	2.6	1.6			

3ANUDC: DISCIPLINE & EXTRA-CURRICULAR ACTIVITIES

B.TECH (Aeronautical) 3rd semester

COURSE OUTCOME

Course Code	Course Name	Course Outcome	Detail
	a- ies	C01	Recognize their strength and those of others to work towards a shared vision (leadership).
J D C	& Extra- Activities	C02	Develop and sustain healthy and meaningful relationship with others (Interpersonal skills).
3ANUDC	pline	C03	Identify and address the needs of the community collaboratively to facilitate positive social change (Social Responsibility).
	Discipline Curricular	C04	Generate innovations through experimentation with novel ideas, forms, and methods (Critical and creative thinking).
		C05	Act as a disciplined citizen with ethical and moral values.

lar	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
rricu	C01						2	1	3	2	1		2		
ra-Cu	C02						2	1	2	3	3		1		
z Extu	Outcome 2 1 3					2	2	2		2					
	C04	3	2 1 3 2 1 2 2 1 2 3 3 1 3 2 2 2 2 2 2 2 2 1 2 1 2 1 3 1 1 2												
iscip	C05						2	1	3	1	1		2		
	Average	3.0	2.0	2.0	2.0	2.0	2.3	1.2	2.5	2.0	1.6		1.8		

4ANU1: AERODYNAMICS – I

B.TECH (Aeronautical) 4th semester

4ANU1	CONTENTS	HOURS
	Basic Fluid Mechanics Concepts: Streamlines and streamfunction; Vorticity,	
	circulation, relation between circulation and vorticity; Kelvin's theorem; Helmholtz	
	theorems.	
	Potential Flow: Velocity potential; Laplacian flow, principle of superposition;	
	Elementary flows: uniform flow, source, sink, vortex & doublet; Potential flow past	
	stationary and rotating circular cylinder, d'Alembert paradox, Magnus effect; Kutta-	
	Joukowski theorem; Blasius theorem.	
	Flow over Airfoils: Airfoil geometry, angle of attack, sectional forces and moment	
	coefficients, centre of pressure and aerodynamic centre; Kutta condition; Introduction	
	to conformal mapping, Kutta-Joukowski transformation; Thin Airfoil Theory,	
	Theodorsen's condition; Real flow effects, effect of angle of attack on pressure	
	distribution, airfoil stall, profile drag.	
	Flow over Finite Wings: Wing geometry, forces and moment coefficients; Wingtip	
	vortices, downwash, induced drag; Lifting Line Theory and its limitations, elliptical	
	and general lift distribution; Simplified horseshoe vortex; Qualitative discussion of	
	flow over delta wings.	
	Experimental Aerodynamics: Components of wind tunnel, flow quality; Correlation	
	of experimental results to actual prototypes, effect of Reynolds number and freestream	
	turbulence; Flow visualization techniques, Basics of pressure, velocity and force	
	measurement.	
	TOTAL	40
	TEXT BOOKS	Year
1	"Fundamentals of Aerodynamics", J.D. Anderson, McGraw-Hill Higher Education	2016

2	"Aerodynamics for Engineering Students", E.L. Houghton, P.W. Carpenter, S. Collicott & D. Valentine, Elsevier	2012						
	REFERENCE BOOKS							
S.NO.	Name of authors/Books/publishers	Year						
1.	"Aerodynamics for Engineers", J.J. Bertin & R.M. Cummings, Pearson Education India	2015						
2.	"Theoretical Aerodynamics", E. Rathakrishnan, John Wiley & Sons	2022						
3.	"Basic Aerodynamics: Incompressible Flow", G.A. Randro, H.M. Macmohan & R.L. Roach, Cambridge University, Prss							
4.	"Low Speed Aerodynamics", K. Ghosh, PHI Learning	2018						

Course	Course	Course	Detail
Code	Name	Outcome	
		C01	Apply conservation laws to solve incompressible flow regime.
	I – S;	C02	Solve the problems on potential flows.
401	AERODYNAMICS	C03	Apply Joukowski theorem to fluid flow problems.
4ANU1	DDYN	C04	Explain airfoil and wing characteristics.
	AERC	C05	Apply thin airfoil theory to predict performance.
		CO6	Measure the aerodynamic forces on various aerodynamic bodies

	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
-	C01		2		1										
CS -	C02	3													
AMI	C03	3	2											2	
DYN	C04		3											2	
AERODYNAMICS	C05	3	2			2									
1	CO6				3			1						3	
	Average	3	2.25		2	2		1						2.33	

4ANU2: ENGINEERING THERMODYNAMICS

B.TECH (Aeronautical) 4th semester

4ANU	CONTENTS									
	Fundamental Concepts: Thermodynamic system and control volume; Open, closed									
	& isolated systems, thermodynamic properties, state and path variables, processes &									
	cycles; Temperature & zeroth law of thermodynamics; Quasi-static process; Equation									
	of state of perfect gas, difference between gas & vapour.									
	First Law of Thermodynamics: First law for a closed system undergoing a change of									
	state, heat & work, mechanical & nonmechanical forms of work, change in internal									
	energy, heat transferred during various thermodynamic processes, P-V diagrams; First									
	law applied to flow processes (control volume systems).									
	Second Law of Thermodynamics: Kelvin-Plank & Clausius statements, heat engines,									
	refrigerator & heat pump; Perpetual motion machines; Reversible & irreversible									
	processes, availability, irreversibility; Introduction to entropy, principle of increase of									
	entropy, Clausius inequality; Carnot cycle; Maxwell's relations.									
	Properties of Steam: Critical state, sensible heat, latent heat, saturated & superheated									
	steam, wet steam, dryness fraction, internal energy of steam, Mollier chart; Work &									
	heat transfer during various thermodynamics processes with steam as working fluid;									
	Clausius-Clapeyron equation and Joule-Thomson coefficient.									
	Air Standard Cycles: Otto cycle; Diesel cycle; Stirling & Ericsson cycle; Brayton cycle; Joule cycle.									
	Vapour Cycles: Simple & modified Rankine cycle with reheat & regeneration.									
	TOTAL	40								
	TEXT BOOKS	Year								
1	"Thermodynamics: An Engineering Approach", Y.A. Cengel & M.A. Boles, McGraw Hill Education	2019								

2	"Engineering Thermodynamics", P.K. Nag, McGraw Hill Education	2013
	REFERENCE BOOKS	
S.NO.	Name of authors/Books/publishers	Year
1.	"Fundamentals of Classical Thermodynamics", G.J. Van Wylen and R.E. Sonntag, John Wiley & Sons	1994
2.	"Thermodynamics", W.C. Reynolds & H.C. Perkins, McGraw-Hill	1979
3.	"Engineering Thermodynamics: Work and Heat Transfer", G. Rogers and Y. Mayhew, Longman Scientific	1992
4.	"Fundamentals of Engineering Thermodynamics", M.J. Moran & H.N. Shapiro, John Wiley & Sons Inc.	2018

Course Code	Course Name	Course Outcome	Details
		CO1	Apply concepts of TD and Zeroth Law in solving numerical problems with relevant units
	G AIICS	CO2 Ana	Analyze and evaluate different forms work, heat and other properties by applying 1st Law of TD
0.2	ERIN	CO3	Evaluate COP, EER, Efficiency, temperature and entropy by applying second law of TD and its corollaries.
4ANU2	ENGINEERING THERMODYNAMICS	CO4	Illustrate problem solving procedure related to pure substances, ideal and real gases using PT, PV, TH diagrams
	HII	CO5	Correlate various thermodynamic variables in thermodynamic relations. Evaluate vapour and gas power cycles, its components and summarize performance on the basis of different parameters

70	Course Outcome s	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12
ENGINEERING THERMODYNAMICS	CO1	3	3	1									1
	CO2	3	3	2	2								2
	CO3	3	3	2	2			2					2
	CO4	3	3	1									
	CO5	3	3	1									
	CO6	3	3	2	3			2					2
	Average	3	3	1.5	2.33			2					1.75

4ANU3: AIRCRAFT STRUCTURES – I

B.TECH (Aeronautical) 4th semester

4ANU3	CONTENTS	HOURS						
	Introduction: Features of aircraft structures, monocoque and semi-monocoque							
	structures, structural idealization, nomenclature & layout, functions of different							
	structural members; Static equilibrium, statically determinate and indeterminate							
	structures; Concept of static stability.							
	Statically Determinate Structures: Analysis of framed structures; Planar truss							
	analysis— method of joints, method of sections, method of moments; Space truss							
	analysis, 3d truss tension coefficients.							
	Statically Indeterminate Structures: Degree of indeterminacy; Bending & tension of							
	fixed beams, composite beam, stress resultants, modulus weighted section properties;							
	Clapeyron's three moment equation; Moment distribution method.							
	Deformations due to Loading: Differential equation of the elastic curve due to							
	composite loading, double integration and moment area methods; Conjugate beam							
	method; Macaulay's method; Principle of superposition.							
	Energy Methods: Work and energy principles, strain energy and complementary strain							
	energy; Principal of virtual work, Principal of virtual displacement; Maxwell's							
	Reciprocal theorem; Potential and complementary potential theorems; Castigliano's							
	theorem, unit load method, application of energy principles in analysis of determinate							
	and indeterminate structures.							
	Failure Theories: Maximum principle stress theory; Maximum principle strain theory;							
	Distortion Theory; Maximum strain energy theory; Octahedral shear stress theory;							
	Fatigue; Creep; Application to aircraft structural problems.							
	TOTAL	40						

	TEXT BOOKS	Year
1	"Aircraft Structures for Engineering Students", T.H.G. Megson, Butterworth- Heinemann	2017
2	"Analysis of Aircraft Structures : An Introduction", B.K. Donaldson, Cambridge University Press	2008
	REFERENCE BOOKS	
S.NO.	Name of authors/Books/publishers	Year
1.	"Theory and Analysis of Flight Structures", R.M. Rivello, McGraw-Hill	2006
2.	"Introduction to Aerospace Structural Analysis", D.H. Allen & W.E. Haisler, John Wiley & Sons	1985
3.	"Aircraft Structures", D.J. Peery, Dover Publications Inc.	2012
4.	"Understanding Aircraft Structures", J. Cutler & J. Liber, Wiley-Blackwell	2006

Course Code	Course Name	Course Outcome	Detail
	ŒS	C01	Identify statically determinate and indeterminate structures.
8	STRUCTURES -I	C02	Analyze the response of statically determinate structures under various loading conditions.
4ANU3		C03	Calculate deformation of simple structural element under different kinds of loads.
	AIRCRAFT	C04	Determine the reactions of structures using strain energy concept.
	AIR	C05	Examine the structural failures using failure theories.

$1-s_0$	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
	C01	3	2											3	
Structures	C02	3	3		1									3	
Aircraft Stru	C03	3	3											3	
	C04	3	3		2									3	2
	C05	3	3		2									3	2
	Average	3	2.8		1.67									3	2

4ANU4: THEORY OF MACHINES

B.TECH (Aeronautical) 4th semester

4ANU4	CONTENTS	HOURS
	Kinematics: Links, pairs, mechanisms, four bar chain and its inversions; Velocity and	
	acceleration, Klein's construction, Coriolis component; Instantaneous center method,	
	pantograph; Scott-Russel, Tchbeicheff straight line, indicator diagram mechanisms.	
	Friction: Laws of static, dynamic and rolling friction, dry and viscous friction; Inclined	
	plane and screw jack; Pivots, clutches; Brakes: Band, block and band & block brakes,	
	braking action.	
	Dynamometers: Absorption and transmission type dynamometers, prony, rope and	
	hydraulic dynamometers.	
	Gears: Laws of gearing, gears terminology; Interference, undercutting and minimum	
	number of teeth on pinion in contact with gear; Spur, helical, bevel gear, rack and pinion	
	mechanism.	
	Gear Trains: Simple, compound, reverted and epicyclic gear trains, analytical and tabular	
	methods for velocity ratio; Gear boxes.	
	Gyroscope: Principle of gyroscopic couple, effect of gyroscopic couple and centrifugal	
	force on airplanes taking a turn.	
	Balancing: Balancing of rotating masses; Balancing of reciprocating masses; Balancing	
	of inline engines and V-engines.	
		40
	TOTAL	
1		I

	TEXT BOOKS	Year
1	"Theory of Machines", S.S Rattan., McGraw Hill	2014
2	"Theory of Machines and Mechanisms", Uicker, Pennocle & Shigley, Oxford University	2014
	Press	
	REFERENCE BOOKS	
S.NO.	Name of authors/Books/publishers	Year
1.	"Theory of Mechanisms and Machines", A. Ghosh, Affiliated East West Press	2013
2.	"Theory of Machines", Thomas Bevan, Pearson Education	2009
3.	"Mechanism and Machine Theory", A. G. Ambekar, Prentice-Hall Of India	2007
4.	"Theory of Mechanisms and Machines", Sharma & Purohit, Prentice-Hall Of India	2006

Course	Course	Course	Detail
Code	Name	Outcome	
	S	C01	Apply the fundamental concepts in developing various mechanisms.
4 (of Machines	C02	Analyze velocity and acceleration in planar mechanisms.
4ANU4		C03	Synthesize simple mechanisms such as 4-bar and slider crank mechanisms.
	Theory	C04	Understanding the concept of gyroscopic and balancing.
	L	C05	Determine appropriate gears for requirements.

	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
	Outcome														
ines	C01	1												1	
Mach i	C02	3	2		1					1				2	
y of I	C03	2												2	
Theory of Machines	C04	2	2		1									2	
ζ,	C05	2								1				2	
	Average	2	2		1					1				1.8	

4ANU5: MACHINE DESIGN

B.TECH (Aeronautical) 4th semester

4ANU5	CONTENTS	HOURS
	Materials: Mechanical Properties; Selection of material from properties and economic	
	aspects.	
	Manufacturing Considerations: Standardization, interchangeability, limits, fits,	
	tolerances and surface roughness, BIS.	
	Design for Strength: Allowable stresses, detailed discussion on factor of safety;	
	Introduction of various design considerations like strength, stiffness, weight, cost,	
	space etc.; Modes of failure, strength and stiffness considerations; Stress concentration,	
	causes and mitigation.	
	Design of Members in Bending: Beams, levers.	
	Design of Members in Torsion : Shafts and shaft couplings, design of keys.	
	Design of Bearing: Bearing classification, Methods of lubrication, hydrodynamic,	
	hydrostatic, boundary etc.; Journal bearing, minimum film thickness, Sommerfield	
	number, thermal equilibrium; Selection of anti-friction bearings for different load	
	cycles, bearing life, static & dynamic load carrying capacity.	
	Fatigue Considerations in Design: Variable load, loading pattern, endurance stresses;	
	Influence of size, surface finish, notch sensitivity and stress concentration; Goodman	
	line, Soderberg line & Gerber line; Design of machine members subjected to combined,	

	steady and alternating stresses; design of shafts under variable stresses, bolts subjected	40
	to variable stresses. TOTAL	
	TEXT BOOKS	Year
1	"Design of Machine Elements", V.B. Bhandari, McGraw Hill Education	2013
2	"Shigley's Mechanical Engineering Design", R.G. Budynas & J.K. Nisbett, McGraw Hill Education	2015
	REFERENCE BOOKS	
S.NO.	Name of authors/Books/publishers	Year
1.	"Analysis and Design of Machine Elements", V.K. Jadon & S. Verma, I.K. International Publishing House Pvt. Ltd.	2014
2.	"A Text Book of Machine Design", A. Karwa, Laxmi Publication	2005
3.	"Machine Design", Hall, Holwenko & Laughlin, Schaum's Outlines Series, McGraw Hill	1968
4.	"Mechanical Machine Design", Bahl & Goel, Standard Publishers Distributors	2002

Course Code	Course Name	Course Outcome	Detail
	_	C01	Select the material to be used for an application based on its properties and understand its BIS nomenclature.
US	Design	C02	Make use of manufacturing considerations in designing a part and select a suitable fit for mating of two parts.
4ANUS	Machine	C03	Determine the sizes of the parts of cotter and knuckle joints considering various modes of failure.
	Ma	C04	Design the shaft under combined loading and shaft - coupling under torsional loading.
		C05	Design the bending members like Lever and laminated spring based on strength and stiffness consideration.

CO-PO MAPPING

	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
E.	C01	3	2	2	2		2								
Desig	C02	2	2	3	2										
Machine Design	C03	3	3	2	2										
Мас	C04	3	3	2	2										
	C05	3	3	2	2										
	Average	2.8	2.6	2.2	2		2								

4ANU6: ADVANCED ENGINEERING MATHEMATICS – II

B.TECH (Aeronautical) 4th semester

4ANU6	CONTENTS	HOURS									
	Complex Analysis: Differentiability and analytic functions; Cauchy-Riemann										
	equations (in Cartesian and polar forms),harmonic functions; Conformal mapping;										
	Complex Line integral, M-L inequality; Cauchy theorem, Cauchy integral										
	formulae; Taylor series and Laurent series; Singularities and zeros, residues at	at									
	poles and infinity, residues at isolated essential singular point; Cauchy residue										
	theorem, evaluation of real definite integrals and improper integrals.										
	Special Functions: Legendre's function, generating function, simple recurrence										
	relations, orthogonal property; Bessel's functions of first and second kind,										
	generating function, simple recurrence relations, orthogonal property.										
	Statistics & Probability: Basic concepts of probability, conditional probability;										
	Baye's theorem; Random variable and distributions: Discrete and continuous										
	random variables, moments, expectation, moment generating function; Binomial, Poisson and normal distribution										
	TOTAL	40									
	TEXT BOOKS	Year									
1	"Advanced Engineering Mathematics", R.K. Jain & S.R.K. Iyengar, Narosa Publications	2002									
2	"Introduction to Probability and Statistics", S. Lipschutz & J.J. Schiller, McGraw Hill Education										
	REFERENCE BOOKS										
S.NO.	Name of authors/Books/publishers	Year									

1.	"Advanced Engineering Mathematics", I. Kreyszig, Wiley India	2010
2.	"Advanced Engineering Mathematics", D. Zill & W. Wright, Jones & Bartlett	2012
	India Private Limited	
3.	"Complex Variables and Applications", J.W. Brown & R.V. Churchill, McGraw	2021
	Hill Education	
4.	"Probability and Statistics", M. Spiegel, J. Schiller & R.A. Srinivasan, McGraw	2009
	Hill Education	

Course	Course	Course	Detail
Code	Name	Outcome	
	ed ing cs – II	C01	Illustrate basic concepts of complex analysis, special function, statistics and probability distribution.
4ANU6	anced neerir natics	C02	Evaluate the analyticity, singularities and integral of a complex valued function.
4 4	Advanced Engineerir Mathematics	C03	Understand the fundamental properties and applications of Bessela and Legendre functions.
	Σ	C04	Apply the concept of probability and statistics to find the physical significance of various distribution.

	Course	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
gu	Outcome														
Engineering natics – II	C01	3	2												
vanced Engir Mathematics	C02	2	3												
Advanced Mathen	C03	3	2												
Adva	C04	2	3												
	Average	2.5	2.5												

4ANU7: AERODYNAMICS LAB

B.TECH (Aeronautical) 4th semester

3P

4ANU7	CONTENTS
	Study of components of subsonic wind tunnel and its calibration
	Measurement of pressure distribution over smooth and rough cylinder
	Measurement of pressure distribution over symmetric and cambered airfoils
	• Force measurement using strain guage balance over models of different shapes
	• Flow visualization of flow over a delta wing at different incidences
	Smoke flow visualization over airfoil and cylinder
	Boundary layer measurements over flat plate
	Calculation of displacement thickness over airfoil at different locations
	Calibration of hot wire anemometer and freestream turbulence measurement
	• Use of pressure sensors for pressure measurement
	Study of velocity measurement using LDV & PIV
	Characterization of subsonic jets

Course	Course	Course	Detail
Code	Name	Outcome	
	LAB	C01	Describe components of wind tunnel.
7	IICS L	C02	Understand calibration of wind tunnel test section.
4ANU7	NAN	C03	Determine pressure distribution and force over different shapes models.
4	AERODYNAMICS	C04	Identify flow pattern over airfoil and cylinder.
	AEF	C05	Evaluate boundary layer measurements.

	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
AERODYNAMICS LAB	C01		1											2	
	C02		2		3									2	
	C03	3	2	2	3									2	
RODY	C04	3	2	2	3									2	
AER	C05	3	2	3	3									2	
	Average	3	1.8	2.33	3									2	

4ANU8: MANUFACTURING TECHNOLOGY LAB

B.TECH (Aeronautical) 4th semester

3P

4ANU8	CONTENTS
	Machine Shop
	Study of lathe machine, lathe tools, cutting speed, feed and depth of cut
	To perform step turning, knurling and chamfering on lathe machine as per
	drawing
	Taper turning by tailstock offset method as per drawing
	To cut metric thread as per drawing
	To perform square threading, drilling and taper turning by compound rest as
	per drawing
	To study shaper machine and its mechanism
	To study the milling machine, milling cutters, indexing heads and indexing
	methods and to prepare a gear on milling
	• machine
	Study of single point cutting tool geometry and to grind the tool as per given
	geometry
	Foundry Shop
	To prepare mould of a given pattern requiring core and to cast it in aluminum
	Moisture test and clay content test
	Strength test (compressive, tensile, shear transverse etc. in green and dry
	conditions)

- Hardness test (mould and core)
- Permeability test
- A.F.S. sieve analysis test

Welding Shop

- Hands-on practice on spot welding
- Hands-on practice on submerged arc welding
- Hands-on practice on metal inert gas welding (MIG) and tungsten inert gas welding (TIG)

Course Code	Course Name	Course Outcome	Detail
		G01	
	Technology	C01	To learn parametric aspects of machining, working principle and machining process.
801			Learn and practice the machining operation and tools used in machining.
4ANU8 Manufacturing Tel		C03	Understand and perform sand mould testing methods.
	nufac	C04	Learn and perform the gas, arc, spot welding operations.
	Ma	C05	Learn to operate the machine used in mechanical engineering workshop.

Lab	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
logy]	C01	3	2	2			1								
Manufacturing Technology Lab	C02	3	3												
	C03	3	3				1								
	C04	3	3	2			2								
anufa	C05	3	3	3			1								
Z	Average	3	2.8	2.3			1.3								

4ANU9: AIRCRAFT STRUCTURES LAB

B.TECH (Aeronautical) 4th semester

3P

4ANU9	CONTENTS
	Study of construction of fuselage and identification of primary load carrying
	members
	• Study of construction of wings, ailerons, flaps, slits, slats and spoilers
	• Study of construction of empennage, stabilizers, rudders adjusting tabs etc.
	with detail of honeycomb structure
	Study of construction of landing gears and wheel turning mechanism
	Study of aileron control linkages including artificial feel mechanism, booster
	and manual controls and their adjustments
	Measurement of forces in statically indeterminate force system
	Deflection of beams with various end conditions for different load
	• Determination of compressive strength of thin plates
	• Verification of Maxwell's Reciprocal theorem & principle of superposition
	Measurement of strain using strain gauges
	Shear centre location for open and closed sections
	• Estimation of the location of principle axes for a given section
	Compression tests on long and short columns
	Calibration of photoelastic materials
	Dye penetrant testing for surface crack detection

Course	Course	Course	Detail							
Code	Name	Outcome								
		C01	To calculate the Young's modulus of material, fracture strength and							
	Lab		fracture pattern of ductile and brittle materials.							
60.	Structures	C02	To compare the theoretical and experimental results of beams with various end conditions.							
4ANU9		C03	To evaluate the Maxwell's Reciprocal theorem and Principle of superposition using beams under various load conditions.							
	Aircraft	C04	To analyze the theoretical and experimental results for axial loading on column members for the end conditions.							
	C05 To estimate the shear center location for open and closed sections.									

	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
Aircraft Structures Lab	C01	2	3		2					1			1		
	C02	3								2		1			
	C03	2	3	1	3					1					
	C04	2	3		1								2		
	C05	3	1	1			1						2		
	Average	2.4	2.5	1	2		1			1.3		1	1.6		-

4ANU10: OBJECT ORIENTED PROGRAMMING LAB

B.TECH (Aeronautical) 4th semester

3P

4ANU10	CONTENTS
	• Use of functions, arrays, strings etc.
	 Use of nested loops in applications
	Brief introduction to pointers and referencing
	• Defining class and objects; use of objects as function parameters; friend
	functions
	• Different types of inheritance
	Constructors and destructors
	Function and operator overloading
	• Introduction to algorithms such as searching algorithms (linear search and
	binary search) and sorting algorithms

Course	Course	Course	Detail				
Code	Name	Outcome					
	red LAB	C01	Understand use of arrays, strings and functions.				
		C02	Identify use of nested loops and pointers.				
4ANU10	ORIE	C03	Apply concept of class and objects.				
441	CT C	C04	Understand types of inheritance.				
	OBJECT ORIENT	C05	Learn about operator overloading.				
CO6 Develop code using searching and sorting algorithms.							

OBJECT ORIENTED PROGRAMMING LAB	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
RAM	C01	2			2	3									1
30G	C02	2			2	3									1
TED PI	C03	2			2	3									1
ENTI	C04	2			2	3									1
ORI	C05	2			2	3									1
ECT	CO6	2			2	3									1
OBJ	Average	2			2	3									1

4ANU11: CONTEMPORARY CHALLENGES

B.TECH (Aeronautical) 4th semester

3P

4ANU11	CONTENTS
	Group discussions and presentations on various contemporary issues such as: • Economic policies of nations affecting large number of people
	Technological advancements and their consequences
	Need for sustainable development
	National and international policies of various countries
	Civil and human rights
	Education policy of state
	Effect of historic and geographic conflicts on present society
	Debates in political theories
	Socio-cultural transformations and their effects

Course	Course	Course	Detail
Code	Name	Outcome	
	Challenges	C01	Analyze some of the real-life challenges facing the society and how to address them.
211		C02	Collect information from various sources and examine technical and economic feasibility of the solution.
4ANU11	oorary	C03	Propose effective use of technology for the benefit of environment.
	Contempo	C04	Become sensitive towards diverse socio-economic conditions of different people.
	သ	C05	Learn to communicate effectively and convince others.

SQ	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
lenge	C01		3	3	3		3	2	2	2			3		
Contemporary Challenges	C02	2	3	3	2		2		2		2	3	3		
	C03	2	3	3	3	2	3	3	3		2	2	3		
	C04		2	2	2		3	2	3	2			3		
Cont	C05						2			3	3		3		
	Average	2	2.75	2.75	2.5		3.25	2.3	2.5	2.3	2.3	2.5	3		

4ANUDC: DISCIPLINE & EXTRA-CURRICULAR ACTIVITIES

B.TECH (Aeronautical) 4th semester

3P

4ANUDC	CONTENTS
	As per UD, RTU norms

COURSE OUTCOME

Course Code	Course Name	Course Outcome	Detail
	a- ies	C01	Recognize their strength and those of others to work towards a shared vision (leadership)
J D C	& Extra- Activities	C02	Develop and sustain healthy and meaningful relationship with others (Interpersonal skills)
4ANUDC	Discipline Curricular	C03	Identify and address the needs of the community collaboratively to facilitate positive social change (Social Responsibility)
	Disci Curri	C04	Generate innovations through experimentation with novel ideas, forms, and methods (Critical and creative thinking)
		C05	Act as a disciplined citizen with ethical and moral values

lar	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
Extra-Curricular	C01						2	1	3	2	1		2		
ra-Cu	C02						2	1	2	3	3		1		
	C03						3	2	2	2	2		2		
ine &	C04	3	2	2	2	2		1		2	1		2		
Discipline	C05						2	1	3	1	1		2		
	Average	3.0	2.0	2.0	2.0	2.0	2.3	1.2	2.5	2.0	1.6		1.8		

5ANU1: AERODYNAMICS – II

$B.TECH\ (Aeronautical)\ 5^{th}\ semester$

5ANU1	CONTENTS	HOURS
	Basic Concepts: Compressibility; Laws of thermodynamics, perfect gas, internal	
	energy, enthalpy, entropy; Mach number, fundamental difference between subsonic and	
	supersonic flow, Mach angle, shock and Mach waves.	
	Steady One-Dimensional Isentropic Flow: Continuity, momentum and energy	
	conservation equations; Stagnation temperature and pressure; Expression for speed of	
	sound; Area-velocity relation, flow in nozzles & diffusers, effect of back pressure.	
	Shocks: Normal shock, normal shock relations for perfect gas, Prandtl relation; Rankine-	
	Hugoniot equation; Moving normal shock; Oblique shocks, oblique shock relations,	
	strong and weak shock solutions, shock polar, detached shock.	
	Expansion Waves: Expansion fan, Prandtl-Meyer function, reflection and interaction of	
	shocks and expansion waves.	
	Non-Isentropic 1D flow: Rayleigh flow; Fanno flow.	
	Airfoils in Compressible flow: Critical Mach number and critical pressure coefficient,	
	drag divergence Mach number; Shock boundary layer interaction, shock induced	
	separation; Whitecomb area rule, supercritical airfoil, swept and delta wings, supersonic	
	aerofoils, wave drag; Similarity rules; Supersonic thin airfoil theory.	
	Introduction to Hypersonic flow: Distinguishing phenomena in hypersonic flow; Basic	
	hypersonic shock and expansion relations; Newtonian model.	

	Experiments in Compressible Flow: Transonic, supersonic and hypersonic tunnels and	
	their peculiarities; Blowdown, indraft and continuous wind tunnels; Shock tubes;	
	Pressure measurement; Velocity measurement; Optical methods of flow visualization.	
	TOTAL	40
	TEXT BOOKS	
1	"Modern Compressible Flow", J.D. Anderson Jr., McGraw Hill	2003
2	"Gas Dynamics", E. Rathakrishnan, Prentice Hall of India Pvt. Ltd.	2014
	REFERENCE BOOKS	
S.NO.	Name of author/Book/publisher	Year
1	"The Dynamics and Thermodynamics of Compressible Flow", A.H. Shapiro, Wiley India	2008
2	"Elements of Gas Dynamics", H.W. Liepmann& A. Roshko, Wiley & Sons	1957
3	"Fundamentals of Gas Dynamics", R.D. Zucker& O. Biblarz, John Wiley & Sons	2002
4	"Compressible Fluid Flow", P.H. Oosthuizen& W.E. Carscallen, McGraw-Hill	2013
5	"Fundamentals of Gas Dynamics", M.J. Zucrow& J.D. Hoffman, Wiley India Private Limited	2019

Course Code	Course Name	Course Outcome	Detail
	П-	C01	Apply the principles of Fluid Mechanics in designing & developing highly efficient aerodynamic bodies.
151	AERODYNAMICS	C02	Signify the role of various fundamental potential flows in assessing the aerodynamic behaviour of various bodies.
SANUI	DYN	C03	Determine the Aerodynamic characteristics incompressible flows.
	AERO	C04	Evaluate aerodynamic performance characteristics of various aerodynamic bodies.

Course	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
Outcome														
C01	3		2									2		2
C02	3	3		2									3	1
C03	3	3		3	2								3	2
C04	3	3		3									3	2
C05	3	2	2	2	2							2	2	2
Average	3	2.75	2	2.5	2							2	2.8	1.8

5ANU2: AIRCRAFT PERFORMANCE

B.TECH (Aeronautical) 5th semester

5ANU2	CONTENTS	HOURS
	Atmosphere: Need to define standard atmosphere; International Standard	
	Atmosphere; Stability of atmosphere; Equivalent, calibrated and indicated	
	airspeed; Primary flight instruments, ASI, VSI, turn-bank indicator.	
	Aerodynamic Characteristics: Forces and moments acting on a flight vehicle,	
	variation of aerodynamic coefficients with angle of attack, Reynolds number and	
	Mach number; Effect of aspect ratio, planform, sweep, taper and twist on	
	aerodynamic characteristics; Different types of drag, drag polar, design methods to	
	reduce drag; Variation of thrust, power and SFC with velocity and altitudes for air-	
	breathing engines.	
	Steady Level Flight: Equations of motion; Thrust and power required for level	
	unaccelerated flight; Maximum thrust and power available for jet engine and	
	propeller engine, variation of thrust/power available and required with altitude;	
	Maximum level flight speed, conditions for minimum drag and minimum power	
	required; Stalling speed; Range and endurance of jet and	
	propeller engine airplanes, condition for maximum range and endurance; Effect of	
	altitude, weight and wind.	
	Climbing Flight: Unaccelearated climb; Excess power; Maximum rate of climb	
	and steepest angle of climb, time to climb, climb hodograph; Absolute and service	
	ceilings; Accelerated rate of climb; Energy manoeuvrability.	
	Gliding Flight: Steady descent, equilibrium glide angle, equilibrium glide	
	velocity; Minimum rate of sink and shallowest angle of glide, maximum gliding	
	range; Glide hodograph.	
	Take-off & Landing Performance: Equations of motion during take-off and	
	landing; Estimation of take-off and landing distances; Effect of head, tail and cross	
	winds; Thrust augmentation, reverse thrust, jet assisted take-off system, spoilers.	

	Manoeuvring Flight: Level coordinated turning flight in horizontal plane, bank	
	angle, load factor, V-n diagram; Minimum turn radius; Maximum sustained and	
	attained turn rate; Turn in vertical plane, pull-up and pull-down manoeuvres.	
	High Lift Devices: Different types of trailing edge flaps; Leading edge devices;	
	Boundary layer control; Powered lift.	
	TOTAL	40
	TEXT BOOKS	Year
1	"Aircraft Performance and Design", J.D. Anderson Jr., McGraw Hill	2000
2	. "Aircraft Performance", W.A. Mair & D.L. Birdsall, Cambridge University Press	2009
	REFERENCE BOOKS	
S.NO.	Name of authors/Books/publishers	Year
1.	"Aircraft Performance", M. Saarlas, John Wiley & Sons	2007
2.	"Fundamentals of Flight", R.S. Shevell, Pearson Education Limited	2006
3.	"Airplane Aerodynamics and Performance", Jan Roskam & Chuan-Tau Edward Lan, DAR Corporation	2000
4.	"Aircraft Performance: An Engineering Approach", M.H. Sadraey, CRC Press	2017

Course	Course	Course	Detail
Code	Name	Outcome	
	4)	C01	To classify the different layer of atmosphere and its phenomina and calculate the aircraft different speed in different layer of atmosphere.
	ance	C02	, , , ,
TU2	Performance	C02	To explain the aerodynamics characteristics and steady level flight.
5ANU2		C03	To explain the forces acting on flight vehicle in different flow region.
	Aircraft	C04	To analyze the steady level, climbing flight and explain the gliding flight, take-off and landing performance.
	ţ	C05	To illustrate the manoeuvring flight and high lift devices.

	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
ance	C01	3	1								1		1		
form	C02	3	3	2	3					1			1		
ft Per	C03	3	3	1	3					1		1	2		
Aircraft Performance	C04	2	3	1	2					2			1		
V	C05	2	3		1				1						
	Average	2.6							1	1.33	1	1	1.25		-

5ANU3: HEAT TRANSFER

B.TECH (Aeronautical) 5th semester

5ANU3	CONTENTS	HOURS					
	Introduction: Definitions of heat and heat transfer, difference between heat						
	transfer and thermodynamics; Basic modes and laws of heat transfer, engineering						
	applications of heat transfer.						
	Conduction: Fourier's law of heat conduction; Heat conduction equation for						
	homogeneous isotropic materials in different coordinate systems, significance of						
	thermal diffusivity.						
	Simple One-Dimensional Steady Heat Conduction Problems: Plane wall						
	temperature distribution and heat transfer, electrical analogy of heat transfer,						
	composite walls, critical thickness of insulation; Steady one-dimensional heat						
	conduction with heat generation; Analysis of fins having variable and constant						
	cross-sectional area, fin efficiency and fin effectiveness.						
	Steady State Two-Dimensional Heat Conduction Problems (with no internal						
	sources): Heat conduction in a rectangular bar by method of separation of						
	variables.						
	Unsteady Heat Conduction: Definitions of lumped and distributed systems;						
	Definition of Biot number and its physical						
	implication, Biot number limit for lumped system.						
	Forced Convection: Fundamentals, no-slip and no temperature-jump conditions,						
	local and average heat transfer coefficients,						
	Nusselt number; Forced convection over a flat plate, momentum and thermal						
	boundary layer, Prandtl number and its range for						
	various fluids.						
	Natural Convection: Physical mechanism of natural convection; Steady laminar						
	free convection from an isothermal vertical plate, similarity parameters,						
	correlations of local and average Nusselt numbers, Grashof number.						
ı							

	T 44 T 4	
	Boiling: Pool boiling, saturated pool boiling curve, critical heat flux correlation,	
	minimum heat flux and film boiling correlations.	
	Condensation: Dropwise and film condensation; Nusselt's theory of laminar film	
	condensation on a vertical plate.	
	Heat Exchangers: Parallel flow & counterflow heat exchangers; Overall heat	
	transfer coefficient, Fouling factor; LMTD, effectiveness of heat exchangers.	
	Thermal Radiation: Radiation characteristics, Planck's law, Stefan-Boltzmann	
	law, Wien's displacement law; Intensity of total and spectral radiation, relation to	
	irradiation; Absorptivity, reflectivity and transmissivity, emissivity, definition of	
	black, gray & diffuse surfaces; Kirchhoff's law; View Factor, reciprocity theorem,	
	Fij for plane, convex and concave surfaces.	
	TOTAL	40
	TOTAL	40
	TOTAL	40
	TEXT BOOKS	40 Year
1		
1 2	TEXT BOOKS "Principles of Heat Transfer", F. Kreith, R.M. Manglik & M.S. Bohn, "Principles of Heat and Mass Transfer", F.P. Incropera, D.P. Dewitt, T.L.	Year
	TEXT BOOKS "Principles of Heat Transfer", F. Kreith, R.M. Manglik & M.S. Bohn, "Principles of Heat and Mass Transfer", F.P. Incropera, D.P. Dewitt, T.L. Bergman & A.S. Lavine, Wiley India	Year 2001
2	TEXT BOOKS "Principles of Heat Transfer", F. Kreith, R.M. Manglik & M.S. Bohn, "Principles of Heat and Mass Transfer", F.P. Incropera, D.P. Dewitt, T.L. Bergman & A.S. Lavine, Wiley India REFERENCE BOOKS	Year 2001 2006
	TEXT BOOKS "Principles of Heat Transfer", F. Kreith, R.M. Manglik & M.S. Bohn, "Principles of Heat and Mass Transfer", F.P. Incropera, D.P. Dewitt, T.L. Bergman & A.S. Lavine, Wiley India REFERENCE BOOKS Name of authors/Books/publishers	Year 2001 2006 Year
2	TEXT BOOKS "Principles of Heat Transfer", F. Kreith, R.M. Manglik & M.S. Bohn, "Principles of Heat and Mass Transfer", F.P. Incropera, D.P. Dewitt, T.L. Bergman & A.S. Lavine, Wiley India REFERENCE BOOKS	Year 2001 2006
S.NO.	TEXT BOOKS "Principles of Heat Transfer", F. Kreith, R.M. Manglik & M.S. Bohn, "Principles of Heat and Mass Transfer", F.P. Incropera, D.P. Dewitt, T.L. Bergman & A.S. Lavine, Wiley India REFERENCE BOOKS Name of authors/Books/publishers "Heat and Mass Transfer: Fundamentals and Applications", Y.A Cengel & A.J.	Year 2001 2006 Year
S.NO. 1.	TEXT BOOKS "Principles of Heat Transfer", F. Kreith, R.M. Manglik & M.S. Bohn, "Principles of Heat and Mass Transfer", F.P. Incropera, D.P. Dewitt, T.L. Bergman & A.S. Lavine, Wiley India REFERENCE BOOKS Name of authors/Books/publishers "Heat and Mass Transfer: Fundamentals and Applications", Y.A Cengel & A.J. Ghajar, McGraw-Hill Education	Year 2001 2006 Year 2017

Course	Course	Course	Detail
Code	Name	Outcome	
	<u>.</u>	C01	Understand the modes of heat transfer.
SANU3	Transfer	C02	Evaluate the performance factors to select the process and product of heat transfer.
5A.	Heat 7	C03	Optimize the heat exchangers.
		C04	Demonstrate and examine the existing correlations.

	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
fer	C01	3	3	2	2										
[rans	C02	3	3	3	3										
Heat Transfer	C03	3	3	3	2										
1	C04	2	3	3	2										
	Average	2.75	3	2.75	2.25										

5ANU4: ELEMENTS OF VIBRATION

B.TECH (Aeronautical) 5th semester

5ANU4	CONTENTS	HOURS
	Basics of Vibration: Scope of vibration, important terminology and classification;	
	Degrees of freedom, harmonic motion; Vectorial representation, complex number	
	representation.	
	Undamped Vibrations of Single Degree of Freedom System: Derivation of	
	equation of motion for one-dimensional longitudinal, transverse and torsional	
	undamped free vibrations using Newton's second law; D' Alembert's principle and	
	principle of conservation of energy; Compound pendulum and centre of percussion.	
	Damped Vibrations of Single Degree of Freedom System: Viscous damping,	
	underdamped, critically damped and overdamped systems, damping ratio,	
	logarithmic decrement; Vibration characteristics of Coulomb damping and	
	Hysteretic damping.	
	Forced Vibrations of Single Degree of Freedom System: Forced vibration with	
	constant harmonic excitation, steady state and transient parts; Frequency response	
	curves and phase response curve; Forced vibration due to excitation of support.	
	System with Two Degrees of Freedom: Principle mode of vibration, mode	
	shapes; Undamped forced vibrations of two degrees of freedom system with	
	harmonic excitation; Vibration absorber, undamped dynamic vibration absorber	
	and centrifugal pendulum absorber.	
	Multiple Degree of Freedom Systems: Exact analysis of undamped free	
	vibrations; Approximate methods.	
	Vibrations of Continuous Systems: Transverse vibration of a string; Longitudinal	
	vibration of a bar; Torsional vibration of a shaft and flexural vibrations of a beam.	
	TEXT BOOKS	Year
1	"Mechanical Vibrations", S.S Rao, Pearson Education	2018
2	"Elements of Vibration Analysis", L. Meirovitch, McGraw-Hill	1975
	·	

	REFERENCE BOOKS	
S.NO.	Name of authors/Books/publishers	Year
1.	"Mechanical Vibrations", R. Venkatachalam, Prentice Hall India Learning Private	2014
	Limited	
2.	"Mechanical Vibrations: Theory and Applications", Kelly, S.G., Cengage	2011
	Learning	
3.	"Theory of Vibrations with Applications", W.T. Thomson, M.D. Dahleh & C.	2008
	Padmanabhan, Pearson Education	
4.	"Principles of Vibration", B.H Tongue, Oxford Publication	2002

Course	Course	Course	Detail
Code	Name	Outcome	
	ion	C01	Explain the concept and types of vibration.
4	Vibration	C02	Determine the natural frequencies and mode shapes of the vibrating system.
5ANU4	of	C03	Solve the equations of motion for multidegree-of-freedom systems.
w	Elements	C04	Determine the natural frequency of continuous systems of free-vibration.
	Ele	C05	Identify the effects of vibrations on aircraft structures and the static and dynamic aeroelastic effects.

	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
ation	C01	3	2	1			1							2	
Vibra	C02	3	2	1										2	
Elements of Vibration	C03	3	3	2										2	
lemer	C04	3	3	2	1									2	
E	C05	3	3	3	1	1								2	
	Average	3	2.6	1.8	1	1	1							2	

5ANU5: AIRCRAFT SYSTEMS

B.TECH (Aeronautical) 5th semester

Airplane Control Systems: Conventional systems; Power-assisted and fully-powered flight controls; Push-pull rod system, flexible push-pull rod system components; Modern control systems, digital fly-by-wire systems, autopilot system technology; Introduction to communication and navigation systems; Instrument landing systems. Hydraulic Systems: Components; Hydraulic system controllers, modes of operation; Pneumatic systems, components, working principles and advantages. Landing Gear Systems: Classification, shock absorbers, retractive mechanism; Anti-skid system, wheels and brake, steering systems, indications. Fuel Systems: Types of fuels, their properties and testing, colour codes, fuel						
components; Modern control systems, digital fly-by-wire systems, autopilot system technology; Introduction to communication and navigation systems; Instrument landing systems. Hydraulic Systems: Components; Hydraulic system controllers, modes of operation; Pneumatic systems, components, working principles and advantages. Landing Gear Systems: Classification, shock absorbers, retractive mechanism; Anti-skid system, wheels and brake, steering systems, indications.						
technology; Introduction to communication and navigation systems; Instrument landing systems. Hydraulic Systems: Components; Hydraulic system controllers, modes of operation; Pneumatic systems, components, working principles and advantages. Landing Gear Systems: Classification, shock absorbers, retractive mechanism; Anti-skid system, wheels and brake, steering systems, indications.						
landing systems. Hydraulic Systems: Components; Hydraulic system controllers, modes of operation; Pneumatic systems, components, working principles and advantages. Landing Gear Systems: Classification, shock absorbers, retractive mechanism; Anti-skid system, wheels and brake, steering systems, indications.						
Hydraulic Systems: Components; Hydraulic system controllers, modes of operation; Pneumatic systems, components, working principles and advantages. Landing Gear Systems: Classification, shock absorbers, retractive mechanism; Anti-skid system, wheels and brake, steering systems, indications.						
operation; Pneumatic systems, components, working principles and advantages. Landing Gear Systems: Classification, shock absorbers, retractive mechanism; Anti-skid system, wheels and brake, steering systems, indications.						
Landing Gear Systems: Classification, shock absorbers, retractive mechanism; Anti-skid system, wheels and brake, steering systems, indications.						
Anti-skid system, wheels and brake, steering systems, indications.						
•						
Fuel Systems: Types of fuels, their properties and testing, colour codes, fuel						
requirements; Pumps, fuel transfer systems, fuel tanks, plumbing, valves,						
indications and warnings; Aircraft fuel dumping/jettison system.						
Auxiliary System: Various types systems, components and operation of air-						
conditioning system; Pressurization system; Oxygen systems; Fire protection						
systems; De-icing and anti-icing systems; Seat safety system: Ejection seats,						
survival packs, parachutes, pilot's personal equipment, doors, windows, emergency						
exits and seat belts.						
General Maintenance Practices: Jacking, levelling and mooring, refuelling and						
defueling of aircraft, safety precautions; Hydraulic and fluid systems precautions						
against contamination; Identification colour coding, symbols and other markings to						
identify the fluid systems.						
TEXT BOOKS	Year					
"Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration", I. Moir & A. Seabridge, Wiley-	2011					
	requirements; Pumps, fuel transfer systems, fuel tanks, plumbing, valves, indications and warnings; Aircraft fuel dumping/ jettison system. Auxiliary System: Various types systems, components and operation of airconditioning system; Pressurization system; Oxygen systems; Fire protection systems; De-icing and anti-icing systems; Seat safety system: Ejection seats, survival packs, parachutes, pilot's personal equipment, doors, windows, emergency exits and seat belts. General Maintenance Practices: Jacking, levelling and mooring, refuelling and defueling of aircraft, safety precautions; Hydraulic and fluid systems precautions against contamination; Identification colour coding, symbols and other markings to identify the fluid systems. TEXT BOOKS "Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration",					

2	"Aircraft Systems", D.A. Lombardo, McGraw Hill	2009
	REFERENCE BOOKS	
S.NO.	Name of authors/Books/publishers	Year
1.	"Aircraft Instruments", E.H.J. Pallett, Pearson Education	2009
2.	"Aircraft Instrumentation and Systems", S. Nagabhushana, I.K. International Private Limited	2010
3.	"Aircraft Structures and Systems", Ray Wilkinson, Mechaero Publishing	2009
4.	"Aircraft Display Systems", M. Jukes, AIAA	2004

Course	Course	Course	Detail
Code	Name	Outcome	
		C01	The student will understand the basic systems operated by fuel,
			hydraulic, landing and pneumatic power.
U S	Systems	C02	The student will know about the various control systems and will be able to select and design appropriate control system based on optimum conditions.
5ANUS		C03	The student will be able to design engine systems for better engine health monitoring and control.
	Aircraft	C04	The student will understand about the auxiliary systems of the aircraft and design them.
		C05	The student will understand the operation of various aircraft instruments and able to select appropriate instruments for aircrafts and to design new instruments

	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
Aircraft Systems	C01	3	1	1	1	1									
	C02	3	1	1	1	1									
	C03	3	1	1	1	1									
	C04	3	1	1	1	1									
	C05	3	1	1	1	1									
	Average	3	1	1	1	1									

5ANU6.1: ROTORCRAFT DYNAMICS

B.TECH (Aeronautical) 5th semester

5ANU6.1	CONTENTS	HOURS						
	Introduction: Basic features and layout of different rotorcrafts, main rotor,							
	gearbox, tail rotor, power plant to drive main and tail rotor; Generation of lift,							
	geometry of the rotor, blade loading, effect of solidity, profile drag, compressibility							
	etc.; Blade area required, number of blades, power losses, rotor efficiency; Flapping, feathering and lagging motions of rotor blade.							
	Rotor Aerodynamics in Vertical Flight: Momentum theory for hover, vertical							
	climb and vertical descent; Induced-velocity curve; Autorotation; Ground effect;							
	Thrust approximation, ideal twist, blade mean lift coefficient, power							
	approximation, tip losses.							
	Rotor Aerodynamics in Forward Flight: Equivalence of flapping and feathering,							
	asymmetry of lift; Momentum theory; Wake analysis; Blade element theory.							
	Performance: Hover and vertical flight; Forward level flight; Climb in forward							
	flight, maximum rate of climb; Optimum and maximum level speed; Rotor limit							
	envelope and prediction of accurate performance; Low drag helicopter							
	speculations; High altitude operation.							
	Helicopter Trim Analysis: Helicopter trim in forward flight, longitudinal trim							
	Effect of tail plane on trim; Lateral control to trim; Fixed and adjustable stabilizers.							
	Dynamic Stability and Control : Longitudinal equations of motion, longitudinal							
	dynamic stability; Lateral dynamic stability; Auto-stabilization; Rotor control							
	response; Differences between stability and control of airplane and helicopter							
	TOTAL	40						
	IOIAL	40						
	TEXT BOOKS	Year						
1	"Basic Helicopter Aerodynamics", J. Seddon, AIAA Series	2011						
2	"Helicopter Dynamics", A.R.S. Bramwell, John Wiley and Sons	1976						

	REFERENCE BOOKS						
S.NO.	Name of authors/Books/publishers						
1.	."Helicopter Performance, Stability and Control", R. W. Prouty, Krieger Publishing Company						
2.	"Principles of Helicopter Engineering", Jacob Shapiro, McGraw Hill						
3.	"The Helicopter and How It Flies", John Fay, Himalayan Books						

Course Code	Course Name	Course Outcome	Detail
		C01	Estimate the performance of a helicopter using momentum theory.
SANU6.1	Rotorcraft Dynamics	C02	Understand the blade element theory for hover and vertical flight.
SAN	Rotol Dyna	C03	Understand the blade element momentum theory for forward flight.
		C04	Analyze the blade response and trim condition of a helicopter rotor system.

	Course	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
S	Outcome														
nami	C01	3	3	2									3	2	
ft Dy	C02	3	3	2									3	3	
Rotorcraft Dynamics	C03	3	3	3						2				3	
	C04	3	3	2	3	2								3	
	Average	3	3	2.25	3	2				2			3	2.75	

5ANU7: CAD LAB

B.TECH (Aeronautical) 5th semester

3P

5ANU7	CONTENTS								
	Introduction and different features of the CAD Software (AutoDesk Inventor/								
	SolidWorks/ CATIA)								
	• 2-D Drafting								
	• 3-D modelling								
	Assembly modelling								
	Feature modification and manipulation								
	• Detailing								
	Surface modelling								

Course	Course	Course	Detail				
Code	Name	Outcome					
		C01	Develop and present the engineering drawings as per standards.				
SANU7	Lab	C02	Develop and present the engineering drawings as per standards. Construct assembly drawing of various machine mechanical systems. : Develop the skills for drafting using CAD software.				
5AI	CAD	C03					
		C04	Construct the orthographic views and solid models using the software.				

	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
CAD Lab	C01	2	1												1
	C02	3	3												2
CAD	C03	3	2	2		3									3
	C04	3	2	2		3									3
	Average	1.75	2	2		3									2.25

5ANU8: HEAT TRANSFER LAB

B.TECH (Aeronautical) 5th semester

3P

5ANU8	CONTENTS
	To determine thermal conductivity of insulating powders
	• To determine thermal conductivity of a good conductor of heat (metal rod)
	• To determine the individual thermal conductivity of different lagging in a
	lagged pipe
	• To determine the total thermal conductivity and thermal resistance of the
	given compound resistance in series
	• To determine the heat transfer rate and temperature distribution for a pin fin
	• To determine the surface heat transfer coefficient for heated vertical cylinder
	in natural convection
	• To find the heat transfer coefficient in forced convection in a tube
	• To study and compare LMTD and effectiveness in parallel flow heat
	exchangers
	• To study and compare LMTD and effectiveness in counter flow heat
	exchangers
	• Determination of heat transfer coefficient in drop wise and filmwise
	condensation
	 To determine critical heat flux in saturated pool boiling
	 To measure the emissivity of the test plate surface
	• To determine Stefan Boltzmann constant of radiation heat transfer
	• To understand the importance and validity of engineering assumptions through
	lumped heat capacity method

Course	Course	Course	Detail
Code	Name	Outcome	
<u>«</u>	Transfer Lab	C01	Analyze basic principles of heat transfer for various heat transfer applications.
5ANU8	Heat Tra Lab	C02	Evaluate and optimize the heat transfer systems.
	H	C03	Evaluate the performance of different heat exchangers.

Lab	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
Heat Transfer L	C01	3	3	3	3										
	C02	3	3	3	3										
	C03	3	3	3	3										
	Average	3	3	3	3										

5ANU9: ELEMENTS OF VIBRATION LAB

B.TECH (Aeronautical) 5th semester

3P

5ANU9	CONTENTS
	To verify time period a simple pendulum
	To determine radius of gyration of compound pendulum
	• To determine the radius of gyration of given bar by using bifilar suspension
	• To determine natural frequency of a spring mass system
	• To determine natural frequency of free torsional vibrations of single rotor
	system
	To verify Dunkerley's rule
	• Performing the experiment to find out damping coefficient in case of free
	damped torsional vibration
	To conduct experiment of trifilar suspension
	Harmonic excitation of cantilever beam using electro-dynamic shaker and
	determination of resonant frequencies
	Study of vibration measuring instruments

Course	Course	Course	Detail
Code	Name	Outcome	
		C01	Determine the radius of gyration of different systems.
61)		C02	Evaluate the cases of natural and forced vibration effects and develop the understanding of practical processes.
5ANU9		C03	Know the effects of damping on vibration analysis.
		C04	Apply the knowledge of evaluating the frequency of systems involving various degree of freedom.

Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
C01	2	1	-	1										
C02	2	2	1	2										
C03	2	2	1	2										
C04	2	2	1	2										
Average	2	1.75	1	1.75										

5ANU10: AIRCRAFT SYSTEM LAB

B.TECH (Aeronautical) 5th semester

3P

5ANU10	CONTENTS									
	Control system 'rigging check' procedure									
	Aircraft 'symmetry check' procedure									
	• 'Flow test' to assess of filter element clogging									
	• 'Pressure test' to assess hydraulic external/internal leakage									
	• Functional test of hydraulic actuator for its proper operation, leakage and load									
	test									
	'Pressure test' procedure on fuel system components									
	'Brake torque load test' on wheel brake unit									
	• Maintenance and rectification of snags in pneumatic, hydraulic and fuel									
	systems components and on aircraft									
	 Functional test of fire detection system on aircraft 									
	 Functional test of aircraft pressurization system on aircraft 									
	• Functional test of aircraft landing gear retraction system and its relevant									
	indications in the cockpit									
	Study of combustion chambers of various engines									

Course Code	Course Name	Course Outcome	Detail
		C01	The student will understand the basic systems operated by fuel, hydraulic, landing and pneumatic power.
10	System Lab	C02	The student will know about the various control systems and will be able to select and design appropriate control system based on optimum conditions.
SANU10		C03	The student will be able to design engine systems for better engine health monitoring and control.
	Aircraft	C04	The student will understand about the auxiliary systems of the aircraft and design them.
	4	C05	The student will understand the operation of various aircraft instruments and able to select appropriate instruments for aircrafts and to design new instruments.

	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
qar	C01	3	1	1	1	1									
Aircraft System Lab	C02	3	1	1	1	1									
	C03	3	1	1	1	1									
ircraf	C04	3	1	1	1	1									
Ą	C05	3	1	1	1	1									
	Average	3	1	1	1	1									

5ANU11: PROFESSIONAL ETHICS & DISASTER MANAGEMENT

B.TECH (Aeronautical) 5th semester

3P

5ANU11	CONTENTS
	Human Values: Effect of technological growth and sustainable development;
	Profession and human values, values crisis in contemporary society; Nature of values,
	psychological values, societal values and aesthetic values, moral and ethical values.
	Professional Ethics: Professional and professionalism, professional accountability,
	the role of a professional, ethic and image of the profession; Engineering profession
	and ethics, technology and society, ethical obligations of engineering professionals;
	Roles of engineers in industry, society, nation and the world; Professional
	responsibilities, collegiality, loyalty, confidentially, conflict of interest, whistle
	blowing.
	Disaster Management: Understanding disasters and hazards related issues in society
	and environment, risk and vulnerability; Types of disasters, their occurrence/causes,
	impact and preventive measures.
	Natural Disasters: Hydro-meteorological based disasters like floods, flash flood,
	cloud burst, drought, cyclone, forest fires; Geological based disasters like earthquake,
	Tsunami, landslides, volcanic eruptions
	Man-Made Disasters: Chemical industrial hazards; Major power breakdowns; Traffic
	accidents; Fire hazards; Nuclear accidents; Disaster profile of Indian continent, case
	studies; Disaster management cycle and its components.

Course	Course	Course	Detail
Code	Name	Outcome	
	Ethics & nagement	C01	Identify the importance of human values, harmony and ethical behavior in real life situations.
SANU11	onal Mar	C02	Distinguish the ethical problems & role of engineers in industry.
5A Professio Disaster		C03	Enhance the knowledge and understanding of the management including manmade disaster.
	Pro Dis	C04	Create and implement information disaster prevention and recovery plan.

Disaster	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P1 0	P11	P12	PSO1	PSO2
	C01	3	3	3	2	3	2	2	1	2	2	2	3		
Ethics	C02	3	2	3	2	2	2	2			1	2	2		
	C03	3	2	3	3	2	1	3		1	3	1	2		
Professional Ma	C04	3	3	3	2	2	1	1	1	2	2		1		
Prof	Average	3	2.5	3	2.25	2.25	1.5	2	1	1.67	2	1.6	2		

5ANUDC: DISCIPLINE & EXTRA-CURRICULAR ACTIVITIES

B.TECH (Aeronautical) 4th semester

3P

4ANUDC	CONTENTS
	As per UD, RTU norms

COURSE OUTCOME

Course Code	Course Name	Course Outcome	Detail
		3 32 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
	a- jes	C01	Recognize their strength and those of others to work towards a shared vision (leadership).
J D C	& Extra-Activities	C02	Develop and sustain healthy and meaningful relationships with others (Interpersonal skills).
3ANUDC	Discipline Curricular	C03	Identify and address the needs of the community collaboratively to facilitate positive social change (Social Responsibility).
	Disci Curri	C04	Generate innovations through experimentation with novel ideas, forms, and methods (Critical and creative thinking).
		C05	Act as a disciplined citizen with ethical and moral values.

Discipline & Extra-Curricular Activities	Course Outcom e	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
ılar Ac	C01						2	1	3	2	1		2		
urricu	C02						2	1	2	3	3		1		
xtra-C	C03						3	2	2	2	2		2		
ne & E	C04	3	2	2	2	2		1		2	1		2		
isciplin	C05						2	1	3	1	1		2		
Q	Average	3.0	2.0	2.0	2.0	2.0	2.3	1.2	2.5	2.0	1.6		1.8		

6ANU1: AEROSPACE PROPULSION – I

6ANU1	CONTENTS	HOURS							
	Fundamentals of Air-Breathing Engines: Review of thermodynamic principles, basic principles of propulsion; History of air-breathing engines; Different types of air-breathing engines, functions of different engine components; Engine-aircraft matching; Methods of thrust augmentation. Inlets: Internal flow and stall in subsonic inlets, boundary layer separation; Major features of external flow near a subsonic inlet; Diffuser performance; Supersonic inlets, starting problem in supersonic inlets, shock swallowing by variable area inlet or byoverspeeding aircraft. Centrifugal Compressor: Operating principle, conservation of angular momentum, applications, advantages and disadvantages; Stage dynamics, velocity diagrams, cascade efficiency, performance characteristics; Stall and surge. Axial Flow Compressor: Euler's turbo-machinery equations, velocity diagram analysis, cascade action; Multi-staging; Degree of reaction; Radial equilibrium; Flow problems, compressor efficiency. Axial Flow Turbine: Types of turbines, performance parameters; Blade design principles; Axial turbine stage, stage efficiency; Turbine Performance; Blade stresses, blade cooling; Turbine and compressor matching. Nozzles: Flow in isentropic nozzles, nozzle choking; Nozzle efficiency, losses in nozzles; Overexpanded and under expanded nozzles; Ejector and variable area nozzles; Thrust reversal.								
	TOTAL								
	TEXT BOOK								
1	"Gas Turbine Theory", H.I.H. Saravanamuttoo, G.F.C. Rogers, H. Cohen & P.V. Straznicky, Prentice Hall	2017							
2	"Mechanics and Thermodynamics of Propulsion", P. Hill & C. Peterson, Pearson Education	1991							
	REFERENCE BOOK								
S.NO.	Name of author/Book/publisher	Year							
1	"Aircraft Propulsion", Saeed Farokhi, Wiley-Blackwell	1971							
2	"Elements of Gas Turbine Propulsion", J.D. Mattingly, McGraw Hill Education	1996							

3	"Fundamentals of Jet Propulsion with Applications", R.D. Flack, Cambridge University Press	2012
5	"Gas Turbine Propulsion", D.P. Mishra, Viva Books	2015

Course	Course	Course	Detail							
Code	Name	Outcome								
	1-	CO1	Contrast different kinds of aircraft engines and estimate their overall performance.							
1 0	Propulsion	CO2	Explain the relation between area ratio and external deceleration ratio for diffuser and estimate flow properties for different inlet conditions.							
6ANU1		CO3	Understand thoroughly the principles of working of compressors and compute their performance characteristics.							
	Aerospace	CO4	Describe the working and challenges of turbines and evaluate their performance.							
	Aeı	CO5	Discern the effect of different flow conditions in a nozzle and ccordingly quantify its efficiency.							

	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
0n – I	C01	3	2	2				1						2	
pulsi	C02	3	3	2	1	1								3	2
e Pro	C03	3	3	2	2	1								3	2
Aerospace Propulsion	C04	3	3	2		1								3	2
Aer	C05	3	3	2										3	
	Average	3	2.8	2	1.5	1		1						2.8	2

6ANU2 Aircraft Structures – II

(3L+1T)

6ANU2	CONTENTS	HOURS									
	Unsymmetrical Bending: Bending stresses in beams of unsymmetrical sections, general, principal axis and neutral axis methods; Bending stresses in beams of symmetric section with skew loads.										
	Shear Flow in Open Sections: Thin-walled beams, concept of shear flow, shear center; Shear flow distribution in symmetrical and unsymmetrical thin-walled sections.										
	Shear Flow in Closed Sections: Bredt-Batho method, single and multi-cell structures; Shear flow in single and multi-cell under torsion, shear and bending; Shear center of closed sections.										
	Buckling of Thin Plates: Rectangular sheets under compression, local buckling stress of thin-walled section; Thin-walled column strength, crippling strength estimation; Buckling of sheet-stiffener combination, effective width.										
	Stress Analysis in Wing and Fuselage: Loads on an aircraft, V-n diagram, shear force and bending moment distribution for semi-cantilever and other types of wings and fuselage; Shear and bending moment distribution for cantilever and semi cantilever types of beams, thin-webbed beam with parallel and non-parallel flanges.										
	TOTAL	40									
	TEXT BOOK										
1	"Aircraft Structures for Engineering Students", T.M.G. Megson, Butterworth- Heinemann	2017									
2	"Analysis and Design of Flight Vehicles Structures", E.H. Bruhn, Jacobs Publishing Inc.	1991									
	REFERENCE BOOK										
S.NO.	Name of author/Book/publisher	Year									

1	"Theory and Analysis of Flight Structures", R.M. Rivello, McGraw Hill	1971
2	"Aircraft Structures", D.J. Peery & J.J. Azar, McGraw Hill	1996
3	"Mechanics of Aircraft Structures", C.T. Sun, Wiley India Private Limited	2012
5	"Airframe Stress Analysis and Sizing", M.C. Niu, Adastra Engineering Center	2015

Course Code	Course Name	Course Outcome	Detail								
Code	Ivaille	Outcome									
		CO1	To calculate the bending stress of various sections with different loading conditions								
	ures –]	CO2	To classify the concept of shear flow in a thin-walled open and closed section								
6ANU2	Structures	CO3	To evaluate the stress developed in single-cell and multicell sections under the different load								
	Aircraft	CO4	To analyze the buckling of aircraft thin structural plates								
	Airc	CO5	To describe the different loads acting on wing and fuselage structure								

II – Se	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
res –	C01	3	2	2		3							3	3	
Aircraft Structures	C02	3	2	2	3				2				3	3	
Str	C03	3	2	1		3					3			3	
crafí	C04	2	1		3								3	2	
Air	C05												2		
	Average														_

6ANU3: Aircraft Stability and Control

(3L+1T)

6ANU3	CONTENTS	HOUR
		S
	Introduction: Static stability, dynamic stability, longitudinal, lateral and directional stability; Equations of motion.	
	Longitudinal Static Stability and Control: Contribution of wing, horizontal tail and fuselage to total moment, canard configuration, flying wing configuration; Stick-fixed neutral point and static margin, stick-free neutral point, determination of neutral point by flight test, maneuver point; Power contribution to stability, elevator power, elevator angle to trim, elevator hinge movement, stick force and stick gearing, stick force gradients, aerodynamic balancing. Directional Static Stability and Control: Vertical tail contribution, fuselage contribution, wing contribution, propeller effect; Rudder power, yaw damping; Rudder-fixed and rudder-free directional stability, asymmetric power, pedal forces, rudder lock. Lateral Static Stability and Control: Effect of wing location, sweep and dihedral, fuselage and vertical tail; Coupling between rolling and yawing moments; Adverse yaw effects; Aileron reversal; Lateral control power; Roll damping, directional divergence. Dynamic Stability and Control: Euler angles, Equations of motion, stability & control derivatives; Decoupling of longitudinal and lateral-directional dynamics; Longitudinal modes; Lateral-directional modes; Autorotation and spin; Control	
	response, impulse and step response; Controllability and Observability; Optimal control. TOTAL	40
	TEXT BOOKS	Year
1	"Flight Stability and Automatic Control", R.C. Nelson, McGraw Hill Education."	1998
2	"Flight Dynamics Principles", M.V. Cook, John Wiley & Sons Inc."	2012
	REFERENCE BOOKS	
S.NO.	Name of authors/Books/publishers	Year
1	"Performance, Stability, Dynamics and Control of Airplanes", B.N. Pamadi, AIAA	2000
2	"Airplane Performance, Stability and Control", C.D. Perkins & R.E. Hage, John Wiley & Sons	1989
3	"Mechanics of Flight", R.H. Barnard, D.R. Philpott & A.C. Kermode, Prentice Hall	2003

4	"Mechanics of Flight", W.F. Phillips, John Wiley & Sons	2017
5	"Dynamics of Flight: Stability and Control", B. Etkin & L.D. Reid, John Wiley &	2017
	Sons	

Course Code	Course Name	Course Outcome	Detail
	and	C01	To explain the different types of stability of aircraft
U 3	ity	C02	To calculate the longitudinal stability condition of different components of aircraft
6ANU3		C03	To classify the directional stability and control
	Aircraft C	C04	To examine the lateral statics stability of the different components of aircraft
	¥	C05	To examine the different modes of aircraft in dynamics stability

trol	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
Control	C01	3	2		3					2			3	3	2
y and	C02	3	2		3								2	3	2
abilit	C03	3	3		3							3	1	3	3
Aircraft Stability and	C04	3	1	2	2	3							3	3	1
Aircr	C05	3	1	3	1	3					3			3	1
7	Average														

6ANU4 Space Dynamics

(3L+0T)

	CONTENTS	HOUR
6ANU4		S
	Introduction: Definition of space, space environment, effect of space environment	
	on materials of spacecraft structure; Solar system, celestial sphere, ecliptic, equatorial	
	plane and equinoxes; History of space exploration, Space missions and role of launch	
	vehicles and spacecraft, different types of earth orbits, types of space craft, spacecraft	
	subsystems; Newton's law of gravitation, Kepler's laws; Vector differentiation,	
	kinematics relative to rotating frames.	
	Two-body Problem: Equation of relative motion, conservation of angular	
	momentum and energy; Different types of trajectories, orbital elements; Lambert's	
	theorem.	
	N-body Problem: Equation of motion; Restricted three-body problem, Lagrangian	
	points, concept of sphere of influence.	
	Orbital Manoeuvres: Hohmann transfer, bielliptic transfer, plane change	
	manoeuvres, combined manoeuvres, low thrust transfer manoeuvres, Non-coplanar	
	transfer; Rendezvous missions, interplanetary trajectories, gravity assist trajectories;	
	Orbit perturbations.	
	Rocket Vehicle Dynamics: Basic functions and features of rockets and missiles;	
	Tsiolkovsky rocket equation; Launch vehicle ascent trajectories and its different	
	phases, effect of aerodynamic drag and gravity on ascent mission performance,	
	vertical, inclined and gravity turn trajectories; Static and dynamic stability of rockets,	
	rocket thrust vector control methods; Concept of multi-staging, series and parallel	
	staging configurations, optimal staging solutions; Re-entry vehicles and missions,	
	aerobraking.	
	Attitude Dynamics and Control: Euler's equations for rotational dynamics; Torque-	
	free motion of asymmetric and axisymmetric rigid bodies; Spinning and non-spinning	
	spacecraft, dual spin spacecraft, effect of energy dissipation on stability of rotational	
	motion, nature of attitude response to atmospheric disturbances; Overview of	

actuation mechanisms for attitude control, gyroscopic motion, stabilization through gravity gradient, attitude sensors, design of control of three-axis stabilized spacecraft in orbit using reaction wheels, thrusters, magnets, single and double gimbaled control	
moment gyros, Yo-Yo mechanism.	
TOTAL	40

	TEXT BOOKS	
1	"Orbital Mechanics for Engineering Students", H.D. Curtis, Butterworth-Heinemann	
2	"Elements of Space Technology", R.D. Meyer, Academic Press	
	REFERENCE BOOKS	
S.NO.	Name of author/Book/publisher	
1	"Orbital Mechanics", V.A. Chobotov, AIAA Education Series	
2	"Fundamentals of Astrodynamics", R.R. Bate, D.D. Mueller & J.E. White, Dover Books	
3	"Spaceflight Dynamics", W.E. Wiesel, Aphelion Press	
4	"Fundamentals of Astrodynamics and Applications", D.A. Vallado, J. Wertz, Microcosm Press 5. "Rocket and Spacecraft Propulsion", M.J.L. Turner, Springer	

Course Code	Course Name	Course Outcome	Detail
	mics	C01	To illustrate basic introduction of orbit, types of spacecraft, space environment and forces acting on spacecraft
	Dynami	C02	To solve the two-body and n-body problem
U4	Space I	C03	To classify the orbital maneouvers
6ANU4	Sp	C04	To articulate the rocket vehicle dynamics

C05	To predict the attitude dynamics and control of spacecraft

CO-PO MAPPING

	Course Outcome	P01	P02	P03	P04	P0 5	P06	P0 7	P08	P0 9	P10	P1 1	P1 2	PSO 1	PSO2
S	C01	3	1		3						1		1	3	1
Dynamics	C02	2	1		3					1	1			2	1
		3	3	1	2		1					1	1	3	3
Space	C04	2	1	1	3					1				2	1
	C05	3	2	1	3								2	3	2
	Average														

6

6ANU5 Mechanics of Composites

(3L+0T)

6ANU5	CONTENTS	HOURS
	Fundamentals of Composite materials: Definition, matrix & fibres, various	
	types of matrix materials and their properties, properties of various type of fibres	
	like glass, Kevlar, carbon and graphite; Polymers, properties of polymers like	
	epoxy, polyester and phenolic; Applications of composites with emphasis on	
	aerospace industry.	
	Manufacturing of Composites: Hand lay-up technique; Autoclave moulding;	
	Pressure bag and vacuum bag moulding; Pultrusion; Resin-transfer moulding;	
	Injection moulding; Bulk and sheet moulding compound methods; Prepregs.	
	Elastic Behaviour of Composite Lamina-Micromechanics: Volume fraction,	
	weight fraction, density of composites; Micromechanics and Macromechanics	
	approach; Longitudinal elastic properties, transverse elastic properties, in-plane	
	shear modulus, Poisson's ratio, Halpin-Tsai equations.	
	Elastic behaviour of Composite Lamina-Macromechanics: Stress-Strain	
	relations, general anisotropic materials, orthotropic material, transversely	
	isotropic material, isotropic material; Stress-strain relations for a thin lamina.	
	Analysis of multidirectional Laminates: Laminate orientation code,	
	symmetric and balanced laminate; Introduction to cross ply, angle-ply and quasi-	
	isotropic laminates; Classical laminate theory, strain-displacement relationship,	
	stress-strain relations, force and moment resultants, in-plane and flexural	
	laminate stiffness; Asymmetric laminate and coupling effect; Stress analysis of	
	cross-ply symmetric laminate under in-plane and flexural loading.	
	Special Types of Composites: Short fiber composites; Sandwich structure	
	composites; Honeycomb structure.	
	Mechanical Testing of Composites: Tensile testing; Compressive testing; Intra-	
	laminar shear testing; Fracture testing; Impact testing; Fatigue testing.	

	Failure and Maintenance of Composites: Failure types in laminates; Damage	
	to laminate structures; Inspection methodology, quality control.	
	TOTAL	40
	TEXT BOOKS	
1	"Analysis and Performance of Fiber Composites", B.D. Agarwal & L.J. Broutman, John Wiley & Sons	2003
2	"Engineering Mechanics of Composite Materials", I.M. Daniel & O. Ishaai, Oxford University Press	2014
	REFERENCE BOOKS	
S.NO.	Name of author/Book/publisher	Year
1	"Mechanics and Analysis of Composite Materials", V.V. Vasiliev & E.V. Morozov, Elsevier Science Ltd.	2008
2	"Mechanics of Composite Materials", R.M. Jones, Taylor and Francis	1957
3	"Principles of Composite Material Mechanics", Ronald F. Gibson, CRC Press	2002
4	"Mechanics of Composite Materials", Autar K. Kaw, Taylor and Francis	2013
5	"Composite Material: Science and Engineering", K.K. Chawla, Springer-Verlag New York Inc.	2019

Course	Course	Course	Detail
Code	Name	Outcome	
	J.	C01	Some understanding of types, manufacturing processes, and applications of composite materials
6ANUS	Mechanics o Composites	C02	Ability to solve and analyze problems on micromechanical behavior of lamina
6A	Meck	C03	Ability to solve and analyze problems on macro mechanical behavior of composites
		C04	To determine stresses and strains in composites.

C05	Apply constitutive equations of composite materials and understand mechanical behavior.
	inechanical behavior.

CO-PO MAPPING

Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
C01	2	3	2	2	2				2			2		
C02	3	3	2	2	3				2			1		
C03	2	2	1	2	2				1			2		
C04	3	3	2	2	3				2			1		
C05	3	3	2	2	2				2			2		
Average														

6

6ANU6.1: UNMANNED AERIAL VEHICLES

(3L+0T)

6ANU6 .1	CONTENTS	HOURS								
•1										
	Introduction: History, classification and applications of UAVs; Unmanned									
	Aircraft System (UAS), UAS composition, societal impact, future prospects;									
	Regulations and safety considerations.									
	Characteristics of UAV Types: Long-range, long-endurance, MUAV types, MAV									
	and NAV types, UCAV, Novel hybrid aircraft configurations.									
	UAV Propulsion: Internal combustion engines; Turbine engines; Electrical									
	systems.									
	Aerodynamics: Low Reynolds number effects; Lift-induced drag, parasite drag;									
	Rotary wing aerodynamics; Response to air turbulence; Dynamic stall.									
	Control and Stability: Flight control of HTOL aircraft, helicopters, convertible									
	rotor aircraft; Autopilot systems & ground control station; Sensors used in UAVs;									
	On-board flight control									
	Introduction to Design and Selection of UAV: Conceptual design, preliminary									
	design, detailed design, selection of UAV for particular requirement.									
	Aspects of Airframe Design: Airframe configuration, scale effects, packaging									
	density; Aerodynamic design; Strength, stiffness and reliability requirements;									
	Flight and gust envelopes including manoeuvre loads; Selection of power plants;									
	Design for stealth. Payload Types: Non-dispensable and dispensable payloads,									
	sensing/surveillance, weaponized, delivery.									
	Communications: Communication media, radio communication, mid-air collision									
	avoidance system, communication data range and bandwidth usage, antenna types,									
	telemetry.									
	Navigation: NAVSTAR-GPS, TACAN, LORAN-C, inertial navigation, radio									
	tracking.									
	TOTAL	40								
	TEXT BOOK									

1	"Unmanned Aircraft Systems: UAVS Design, Development and Deployment", Reg Austin, Wiley	
2	"Introduction to Unmanned Aircraft Systems", D.M. Marshall, R.K. Barnhart, E. Shappee & M.T. Most, CRC Press	
	REFERENCE BOOK	
S.NO.	Name of author/Book/publisher	
1	"Small Unmanned Aircraft: Theory and Practice", R.W. Beard & T.W. McLain, Princeton University Press	
2	"Unmanned Aircraft Systems", E. Atkins, A. Ollero & A. Tsourdos, John Wiley & Sons	
3	"Introduction to UAV Systems", P. Fahlstrom & T. Gleason, Wiley	
4	"Theory, Design, and Applications of Unmanned Aerial Vehicles", A.R. Jha, CRC Press	

Course	Course	Course	Detail
Code	Name	Outcome	
	7	CO1	Discuss the configuration, performance parameters, and design aspects of unmanned aerial vehicle (UAV).
Η.	Aerial 28	CO2	Compare the sensors, payloads and actuators suitable for various UAVs.
6ANU6.1		CO3	Explain the working of UAV propulsion systems.
6 A	Unmanned Vehicl	CO4	Discuss the communication and navigation systems in UAV
	Ω	CO5	Explain the practical limitations in the design and development of an UAV

nanned	Course Outcom e	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO 2
Unn	C01	S	-	W	-	-	-	-	-	-	-	-	-	М	

	C02	М	-	-	-	-	-	-	-	-	-	-	-	S	
	C03	W	-	-	-	-	-	-	-	-	-	-	-	W	
	C04	М	-	-	-	-	=	=	=	-	-	-	=	W	
	C05	-	-	W	-	-	-	S	-	-	-	-	-	W	
	Averag e														

6ANU7: AEROSPACE PROPULSION LAB

(3L+0T)

6ANU7	CONTENTS	HOU RS
		KS
	• Study of an aircraft piston engine (includes study of assembly of	
	subsystems, various components, their functions and operating principles)	
	• Study of an aircraft jet engine (includes study of assembly of subsystems,	
	various components, their functions and operating principles)	
	 Scrutiny of the constructional details of combustion chamber 	
	 Analysis of performance of a propeller 	
	Characterization of intake	
	 Experiment on axial compressor (flow fan) test rig 	
	 Study of an aircraft computerized gas turbine 	
	 Ignition studies of solid and liquid propellants 	
	 Understanding operation of a ramjet engine 	
	 Measurement of nozzle flow 	
	 Cascade testing of a model of axial compressor and turbine blade row 	
	 Flame stabilization in continuous combustion unit 	
	 Burning rate measurement of solid propellants in a strand burner 	
	 Description of constructional details of afterburning system. 	

COURSE OUTCOME

Course	Course	Course	Detail
Code	Name	Outcome	
	lsion Lab	C01	Understand the basics of propulsion, working principles of reciprocating engines, performance estimation based on rotation angles, and components of engine and their functions
6ANU7	pace Propulsion	C02	Understand the basic characteristics and range of performance of axial flow gas turbine. Perform parametric jet engine performance analysis and turbo machinery and basic combustion calculations
	Aerospace	C03	Teach physical working of turbo machinery components and related pressure calculations

C04	Give practical exposure on working of nozzle and its performance calculations
C05	Explain actual working of gas turbine combustion and associated combustion mechanism different advanced propulsion systems.

	Course	P01	P02	P03	P04	P05	P06	P07	PO	P09	P1	P11	P12	PSO	PSO2
	Outcome								8		0			1	
n Lab	C01	S	М	S					S				S	S	
Propulsion	C02	S	S	S	W		S			S			М	М	
	C03	S	М	М									М	М	
Aerospace	C04	S	S	М		М							S	S	
Aero	C05	S	S	М					М				S	S	
	Average														

6ANU8 Aeromodelling Design and Fabrication lab

(3L+0T)

6ANU8	Aeromodelling Design and Fabrication lab									
DANUS	 Design and fabrication of fixed-wing gliders Comparison of properties of thermocole, balsa wood, Styrofoam, composites for aeromodel fabrication □ Detailed design of fixed-wing powered aeromodels Design, fabrication and testing of different components Aerodynamic and structural design Use of flight simulator to practise flying aeromodels Concepts used in unconventional UAVs such as rotary wing models and 	HOURS								
	ornithopters TOTAL	40								

COURSE OUTCOME

Course	Course Course		Detail								
code	Name	Outcome									
	ng ab	C01	Demonstrate the working principal of fixed-wing gliders.								
U 2	dellir and ion la	C02	Know wood crafting and the technology of new materials								
6ANU2	Aeromodelling Design and Fabrication lab	C03	Understand aerodynamics, designing, electronics and technology								
	Ae L Fal	C04	Design, fabricate and fly models								
		CO5	Discuss the autopilot systems in aircraft.								

odelling in and	Course Outcome	P01	P0 2	P03	P04	P0 5	P06	P07	P0 8	P0 9	P10	P1 1	P12	PSO 1	PSO 2
om Sign	C01	S	S	1	S	1	М	-		-	1	•	M	M	
Aero De	C02	S	S	W	S	-	М	-	-	-	-	-	М	М	

C03	М	М	-	S	-	М	-	-	-	-	-	S	
C04	М	S	-	S	-	-	-	-	-	-	-	S	١
C05													
Averag													
e													

6ANU9 Advanced Programming in MATLAB

(3L+0T)

6ANU9	CONTENTS	HOU
		RS
	Posice of MATLAD computer programming	
	 Basics of MATLAB computer programming 	
	 Use of formulae and inbuilt functions 	
	 MATLAB scripts and functions (m-files) 	
	 Loops and nested loops 	
	 Array, vector and matrices 	
	 Plotting functions and vector plots 	
	 Solving differential equations using MATLAB 	
	 Reading and writing data, file handling 	
	 Using MATLAB toolboxes 	
	MATLAB graphic functions.	

	TEXT BOOKS	
1	"Getting Started with MATLAB: A Quick Introduction for Scientists & Engineers", R. Pratap, Oxford	
2	"MATLAB for Beginners: A Gentle Approach", P.I. Kattan, P.I. Kattan	
	REFERENCE BOOKS	
S.NO.	Name of author/Book/publisher	
1	"MATLAB For Dummies", J. Sizemore, John Wiley & Sons	
2	"Modeling and Simulation using MATLAB – Simulink", S. Jain, Wiley	
3	"MATLAB Programming for Engineers", S.J. Chapman, Cengage	
4	"Essential MATLAB for Engineers and Scientists", B. Hahn, D.T. Valentine, Academic Press 5. "MATLAB: An Introduction with Applications", A. Gilet, Wiley	

COURSE OUTCOME

Course Code	Course Name	Course Outcome	Detail
6A N U9	A dv an	C01	To classify the basic concepts of MATLAB.

C02	To develop loops, branching, control instruction and functions in MATLAB programming environment.									
C03 To Analyze different types of graphs of different mathematical models.										
C04	To Apply many built in functions in MATLAB to solve numerical problems.									
C05	To develop code for solving problems involving different types of mathematical models and differential equations									

in MATLAB	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P0 8	P09	P1 0	P11	P12	PSO 1	PSO2
MAT	C01	3	2	1	3						1		1	3	2
ng in	C02	2	3			2				1			2	2	3
ımmi	C03	3	1								1		1	3	1
rogra	C04	2	3	1		1					1		2	2	3
ced P	C05	1	3	1		1			1				1	1	3
Advanced Programming	Averag e														

6ANU10 Mechatronics Lab

(3L+0T)

6ANU	Mechatronics Lab	HOURS
10		
	 Introduction to the concept of Mechatronics and its applications Study of different types of sensors and transducers Introduction to Arduino IDE and its basic commands Introduction to programming in LabVIEW Use of LabVIEW for data acquisition Variation of blink rate and brightness of LEDs Using servo motor as an actuator to move to specified position Speed control of stepper motor Use of relay as conditional switch Use of strain guage sensor for measuring loads Temperature measurement using thermocouple Measurement of pressure using data acquisition system □ Introduction to Simulink 	
	TOTAL	40

COURSE OUTCOME

Course	Course	Course	Detail
code	Name	Outcome	
	Lab	C01	Understand use of different kinds of sensors and actuators
6ANU10		C02	Learn writing simple codes in Arduino IDE
6AN	Mechatronics	C03	Familiarize with basics of LabVIEW program and its components such as front panel and block diagram
	Me	C04	Learn how to use basic sensors and actuators like LEDs, buzzer, motors.
		CO5	Measure load, displacement and temperature using analogue and digital sensors.

	Course Outcom e	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
Lab	C01	3	1	2		3							2		
nics	C02	3	3	3	2	3							2		
atro	C03	2	3	3	2	3							2		
Mechatronics Lab	C04	3	3	3	2	3							2		
	C05	3	2	2	2	3							2		
	Averag e														

6ANU11 Business Communication Lab

(3L+0T)

6ANU	Business Communication Lab										
11											
	Introduction: Process of communication, importance of communication in business; Differences between technical and general communication; Barriers to communication and measures to overcome them.										
	Language for Communication: Language and communication; Essentials of good style, expressions and words to be avoided, grammar and usage.										
	Listening Skills: Importance of Listening, barriers to listening, strategies for effective listening, listening in a business context.										
	Oratory Skills: Structure of different types of business speeches, public speaking, voice modulation; Quotations by prominent business personalities; Practice of appreciation, motivation, criticism.										
	Internal Business Communication: Guidelines for attending meetings, common mistakes made at meetings; Writing memos, circulars and notices, important guidelines.										
	External Business Communication: Writing business letters, importance of										
	business letters, difference between personal and business letters; Types of										
	business letters, structure and format of business letters and important their										
	features such as style, effectiveness, promptness; Communication with media through news releases and advertisements.										
	E-mail Writing: Communication through e-mail, e-mail etiquette; Overcoming problems in e-mail communication.										
	Body Language: Importance of body language; Appropriate body postures in standing or sitting position, body movements during presentations and speeches, gestures, facial expressions, eye movements in response to different situations; Video samples.										
	Presentation Skills: Importance of giving presentations, presentation skills, use of visual aids such as handouts, transparencies and presentation software, features of a good presentation; Video conferencing.										

Technical Report Writing: Types of reports and different formats, purpose of report writing; Structure of report; Features of effective writing such as clarity,
brevity, appropriate tone, balance etc.; Synopsis and thesis writing.
Employment Communication: Preparing resume, contents of good resume, guidelines for writing resume, different types of resumes; Writing cover letter; Group discussion skills; Interview skills, manners and etiquettes to be maintained during an interview, sample questions commonly asked during interview.
TOTAL

	TEXT BOOKS	
1	"Business Communication: Process and Product", M.E. Guffey & D. Loewy, Cengage Learning	
2	"Business Communication: Making Connections in a Digital World", R. Lesikar, M.E. Flatley & K. Rentz, McGraw-	
	REFERENCE BOOKS	
S.NO.	Name of author/Book/publisher	
1	"Business Communication: Developing Leaders for a Networked World", P. Cardon, McGraw-Hill Education	
2	"Basic Communication Skills for Technology", A.J. Rutherfoord, Pearson	
3	"Essentials of Business Communication", R. Pal & J.S. Korlhalli - Sultan Chand & Sons	
4	"Business Communication: Skills, Concepts, and Applications", P.D. Chaturvedi & M. Chaturvedi, Pearson India	

Course code	Course	Course	Detail
code	Name	Outcome	
	qer	C01	Explain the basic terminologies of business communication.
U11 ness ation I		C02	Collect the pattern of different business letters and formats used in written communications
6ANU11	Business Communication Lab	C03	Discover semantics and body language relevant to business communication.
	Cor	C04	Examine englisg accent and pronunciation of commonly used English words.
		CO5	Communicate effectively while handling telephonic interviews, participating in GD and during public speaking

CO-PO MAPPING

Lab	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P0 8	P0 9	P10	P1 1	P12	PSO1	PSO 2
ıtion	C01		3	1	1	1	3	1	3	2	3	3	3		
Business Communication	C02		2	1	1	1	2	2	3	2	3	3	3		
	C03						1	1	2	2	3	2	3		
	C04		1	1	3	1	1	1	3	2	3	3	3		
	C05		1	1	1	1	1	1	3	2	3	3	3		
	Averag e		1.8	1	1.5	1	1.6	1.2	2. 8	2	3	2. 8	3		

$7 ANU1: Aerospace\ Propulsion-II$

7ANU1	Aerospace Propulsion – II	HOURS

process; Combustion chamber performance; Ignition and engine starting tube cooling; Flame stabilization; Afterburners, supercharging. Ramjet Propulsion: Operating principle of ramjet propulsion, types propulsion; Efficiencies of different components; Critical, subcritic supercritical modes of combustion; Need for supersonic combustion hypersonic propulsion, salient features of scramjet engine and its applicate hypersonic vehicles, problems associated with supersonic combustion. Rocket Propulsion: Brief history and principle of rocket; Rocket expectation of rockets, mass ratio of rocket; Solid propellant rockets, est of solid propellant adiabatic flame temperature; Salient features of propellant rockets, selection of liquid propellants, thrust control in liquid cooling in liquid rockets; Hybrid rocket propulsion; Rocket nozzles, conical	of ram al and on for ons for uation;
propulsion; Efficiencies of different components; Critical, subcritical supercritical modes of combustion; Need for supersonic combustion hypersonic propulsion, salient features of scramjet engine and its applicate hypersonic vehicles, problems associated with supersonic combustion. Rocket Propulsion: Brief history and principle of rocket; Rocket ed Classification of rockets, mass ratio of rocket; Solid propellant rockets, est of solid propellant adiabatic flame temperature; Salient features of propellant rockets, selection of liquid propellants, thrust control in liquid cooling in liquid rockets; Hybrid rocket propulsion; Rocket nozzles, conical	al and on for ons for uation;
Classification of rockets, mass ratio of rocket; Solid propellant rockets, est of solid propellant adiabatic flame temperature; Salient features of propellant rockets, selection of liquid propellants, thrust control in liquid cooling in liquid rockets; Hybrid rocket propulsion; Rocket nozzles, conical	
and contour nozzle, under and over expanded nozzles, flow separation in runconventional nozzles; Nozzle performance, nozzle area ratio, mass flocharacteristic velocity; Thrust coefficient, performance parameters; Stag clustering.	rockets, nozzle nozzles, w rate,
Advanced Propulsion Techniques: Arc jet, Resisto jet; Hall effect thrust Electric rocket propulsion; Ion propulsion techniques; Nuclear rocket; Sol Preliminary Concepts in nozzleless propulsion; Thrust reverser; Stealth technology.	-
	TOTAL 4
TEXT BOOK	OIAL 4

S.NO.	Name of author/Book/publisher	
1	"Aerospace Propulsion System", T.A. Ward, Wiley	
2	"Aerospace Propulsion", T.W. Lee, Wiley-Blackwell	
3	"Aircraft Engines and Gas Turbines", J.L. Kerrebrock, The MIT Press	
5	"Aircraft Propulsion and Gas Turbine Engines", A.F. El-Sayed, CRC Press	

Course	Course	Course	Detail
Code	Name	Outcome	
	- u	CO1	Understand the fundamentals of propeller engine and their design parameter and performance.
NU1 Propulsion	pulsio	CO2	Basic concept of combustion process and determine the various condition for combustion stability
7ANU1		CO3	Evaluate various type of aviation fuels and their merits and demerits
7	erospace	CO4	Evaluate various type of aviation fuels and their merits and demerits
	Aer	CO5	Basic principle of Ramjet engine and their performance parameters.

	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
Aerospace Propulsion – I	C01	S	М											S	
	C02	S		S						М			W	М	
	C03	S	М										S	М	
osbac	C04	S	М										S	S	
Aero	C05	М	М	S						М				S	
	Average														

7ANU2 AIRCRAFT DESIGN

(3L+1T)

7ANU2	CONTENTS	HOURS				
	Aircraft Design Fundamentals: Introduction to design, engineering design, feasibility analysis, review, evaluation, and feedback; Conceptual system design, preliminary system design, detail system design; Aircraft design requirements and specifications, airworthiness, aerodynamic and structural design considerations; UAV design.					
	Aircraft Conceptual Design: Aircraft configuration alternatives, aircraft classification and design constraints; Configuration selection process and trade-off analysis; Material selection; Conceptual design optimization.					
	Preliminary Design: Maximum Take-Off Weight Estimation; Estimation of cruise and manoeuvring loads; Load factor, v-n diagram; Wing loading, wing area; Engine sizing.					
	Wing Design: Factors influencing selection of airfoil and planform; Spanwise load distribution, Stalling, take-off and landing considerations; Bending moment and shear force; Selection of wing vertical location, airfoil section, wing incidence, aspect ratio, taper ratio, sweep angle, twist angle, dihedral angle, high-lift device; Estimation of wing drag.					
	Tail Design: Aircraft trim requirements; Tail configuration, canard or aft tail; Optimum tail arm; horizontal tail parameters; Vertical tail design.					
	Fuselage Design: Fuselage configuration design and internal arrangement; Cockpit design; Passenger cabin design; Cargo section design; Other fuselage internal segments; Optimum length-to-diameter ratio; Lofting.					
	Propulsion System Design: Functional analysis and design requirements; Selection of type of engine, number of engines, engine location; Engine installation; Propeller sizing; Engine performance.					
	Landing Gear Design: Functional analysis and design requirements; Selection of landing gear configuration, possible retraction mechanism into fuselage or wing; Landing Gear position according to aircraft centre of gravity; Absorption of landing loads.					
	Design of Control Surfaces: Aileron Design, Elevator Design, Rudder Design.					

5	"Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes", E. Torenbeek, Wiley-Blackwell	
4	"Design of Aircraft", T.C. Corke, Pearson	
3	"General Aviation Aircraft Design: Applied Methods and Procedures", S. Gudmundsson, Butterworth-Heinemann	
2	"Introduction to Aircraft Design", J.P. Fielding, Cambridge India	
1	"Aircraft Design", A.K. Kundu, Cambridge University Press	
S.NO.	Name of author/Book/publisher	
	REFERENCE BOOK	
2	"Aircraft Design: A Systems Engineering Approach", M. H. Sadraey, Wiley-Blackwell	
1	"Aircraft Design: A Conceptual Approach", D.P. Raymer, AIAA Education Series	
	TOTAL TEXT BOOK	40
	Complete Design Problem: Design of airframe for given specifications with constraints; Prediction of performance, stability and control, range-payload diagram, v-n diagram, noise and emission levels, life cycle cost; Reviewing selection of engines from all considerations; Freezing the design; Preparation of preliminary drawings including 3 views and layout.	
	Advanced Design Concepts: Supersonic aircraft design; Very large aircraft; Morphing aircraft; Supercritical wing; Relaxed stability; Flying wing, tailless, lifting fuselage, and blended wing-body designs; Special considerations such as stealth, maintainability etc.	
	Weight Calculation: Estimation of weight of major components, Aircraft weight distribution; Aircraft centre of gravity calculation, centre of gravity range; Aircraft mass moment of inertia.	

Course	Course	Course	Detail
Code	Name	Outcome	
		CO1	To distinguish aircraft design fundamental and conceptual design
7	Design	CO2	To illustrate aircraft preliminary design
7ANU2		CO3	To estimate the different parameter of aircraft components
7	Aircraft	CO4	To develop the landing gear design and control surfaces
		CO5	To Calculate the aircraft center of gtavity and devlop the detail aircraft design

ssign	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
	C01	3	1	3	2						1		1
	C02	3	3	3	2	2		1		2	1		
aft Do	C03	3	3	2	3				1				1
Aircraft Design	C04	3	2	2	3			1		2		1	
4	C05	3	2	2			2				1		2
	Average												

7ANU3: Introduction to Computational Fluid Dynamics

(3L+1T)

7ANU3	Introduction to Computational Fluid Dynamics	HOUR S
	Introduction: Importance and applications of CFD in diverse fields; Different types of partial differential equations — hyperbolic, parabolic, elliptic and mixed types; Fundamental concept of CFD. Governing equations: Continuity, momentum and energy equations in conservative and non-conservative forms; Governing equations in boundary layers and inviscid flows; Initial and boundary conditions. Discretization: Concept and need of discretization of differential equations; Different discretization techniques — finite difference, finite element and finite volume methods and their comparison; Fundamentals of FDM, forward, backward and central difference, ADI scheme, applications to simple problems such as transient one-dimensional and two-dimensional conduction; Stability criterion, errors, consistency, optimum step size. Grid generation: Types of grid; Structured, unstructured and hybrid mesh in 2d & 3d, their relative merits and regions of application; Coordinate transformation; Elliptic grid generation; Grid independence test; Adaptive grids, modern developments in grid generation. Calculation of flow field: Methods of solution, simple 1d computations using different methods; Convergence criterion; Implicit and explicit algorithms; Pressure and velocity corrections; Vorticity-streamfunction method; Solution of turbulent flows and turbulence modelling.	
	TOTAL	40
	TEXT BOOKS	Year
1	"Computational Fluid Dynamics – The Basics with Applications", J. D. Anderson Jr., McGraw-Hill	1998
2	"Computational Fluid Flow and Heat Transfer", K. Muralidhar & T. Sundarajan, Narosa Publishing House	2012
	REFERENCE BOOKS	
S.NO.	Name of authors/Books/publishers	Year
1	"Numerical Computation of Internal and External Flows", C. Hirsch, Butterworth- Heinemann	2000
2	"Fundamentals of Engineering Numerical Analysis", P. Moin, Cambridge University Press	1989

3	"Numerical Methods for Engineering Application", J. H. Ferziger, Wiley	2003
4	"Computational Methods for Fluid Dynamics", J. H. Ferziger & M. Peric, Springer	2017
5	"Computational Fluid Dynamics", T.J. Chung, Cambridge University Press	2017

Course	Course	Course	Detail
Code	Name	Outcome	
	p	C01	Ascertain basic concepts in the fluid mechanics
es.	ion to nal Fluid ics	C02	Analyze practical complications of fluid flow
7ANU3	oduction tational ynamics	C03	Design incompressible flow components used in fluid machines and air- conditioning
	Introduction Computational Dynamics	C04	Understand the performance of fluid flow devices in laminar and turbulent flows
	Ö	C05	Apply the concepts in the analysis of fluid flow problems

ıl Fluid	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
tiona	C01	3	3	2	3										
Computational	C02	3	3	3	2	3		2	2				2		
	C03	2	3	2	2	3			3				2		
ion to	C04	3	2	3	2	3		2	2	1			2		
Introduction to	C05	2	2	2	2	2		2	2	1			2		
Intro	Average	2.6	2.6	2.4	2.2	2.8		2	2.3	1			2		

7ANU4 Finite Element Method

	CONTENTS										
7ANU4		S									
	Introduction and Review of Mathematics: Introduction to FEM and its applications;										
	Advantages of FEM, comparison with other methods such as FDM and FVM; Review										
	of matrix algebra, Gauss elimination method, banded symmetric matrix and										
	bandwidth.										
	Discretization: Geometrical approximations, Element shapes and behaviour, Choice										
	of element types, size and number of elements, Location of nodes; p and h method of										
	mesh refinement; Shape functions and their properties; Assembly and boundary										
	conditions.										
	Finite Element Formulation from Governing Differential Equations: General field										
	problems, discrete and continuous models; Method of weighted residuals; Galerkin's										
	method and other methods; Introduction to variational formulation (Ritz technique);										
	Convergence of solution, compatibility.										
	One-Dimensional Finite Element Analysis: One-dimensional second order equation,										
	derivation of shape functions, Stiffness matrix and force vectors, assembly of elemental										
	matrices, Derivation of finite elements equations using potential energy approach, 1-D										
	bar element; longitudinal vibration and mode shapes, fourth order beam equation,										
	transverse deflections and natural frequencies, solution of problems from fluid										
	mechanics and heat transfer.										
	TOTAL	40									

	TEXT BOOKS	
1	"Fundamental of Finite Element Analysis", D.V. Hutton, McGraw Hill Education	
2	"Text Book of Finite Element Analysis", P. Seshu, Prentice Hall India	
	REFERENCE BOOKS	

S.NO.	Name of author/Book/publisher	
1	"An Introduction to the Finite Element Method", J.N. Reddy, McGraw-Hill	
2	"Finite Element Procedure in Engineering Analysis", K.J. Bathe, Prentice Hall India	
3	"Introduction to Finite Elements in Engineering", T.R. Chandrupatla & A.D. Belegundu, Prentice Hall of India	
4	"Applied Finite Element Analysis", L.J. Segerlind, John Wiley & Sons	
5	"Concepts and Applications of Finite Element Analysis", R.D. Cook, D.S. Malcus, M.E. Plesha & R.J. Witt, John Wiley & Sons	

Course Code	Course Name	Course Outcome	Detail
		C01	Realize the significance and applications of finite element method
	Tethod	C02	Formulate and solve one-dimensional structural problems using linear and quadratic elements and explain concept of shape function & its properties.
	Element Method	C03	Analyze plane stress and plane strain problems using CST elements
7ANU4	Finite E	C04	Use FEM to solve simple fluid mechanics and heat transfer problems
		C05	Develop shape functions for higher order elements and explain the concept of convergence and refinement.

ent	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
Elem	C01	1		1									2	-	1
Finite	C02	3	3	2	3	3								-	3
H	C03	3	3	2	3	3								ı	3

C04	3	3	2	2	3					-	3
C05	3	2	1	2	2					-	2
Average	2.6	2.75	1.6	2.5	2.75				2		2.4

7ANU5 Automatic Control Systems

7ANU5	CONTENTS	HOURS							
	Introduction: Open loop and closed loop control systems, series and parallel								
	system; Feedback characteristics of control systems; Mathematical models of								
	physical systems; Control systems and components.								
	Feedback Control System: Transfer function of linear systems; Impulse response								
	of linear Systems; Block diagrams of feedback control systems, reduction of block								
	diagrams, signal flow graphs, output to input ratios.								
	Analysis of Feedback Control Systems: Time response analysis, effects of								
	derivative and integral control; Different types of test inputs; Steady state response								
	of feedback control system, steady state error; Frequency response; Correlation								
	between frequency domain and time domain specifications; Bode plot analysis.								
	System Stability: Concept of stability and algebraic criteria; Routh-Hurwitz								
	criterion; Root locus technique; Nyquist stability criterion.								
	TOTAL	40							
	TEXT BOOKS	_							
1	"Modern Control Engineering", K. Ogata, PHI learning								
2	"Automatic Control Systems", B,C. Kuo & F. Golnaraghi, Wiley								
	REFERENCE BOOKS								
S.NO.	Name of author/Book/publisher								
1	"Aircraft Flight Dynamics and Control", W. Durham, Wiley-Blackwell								

2	"Control System Design: An Introduction to State-Space Methods", B. Friedland,	
	Dover Publications Inc.	
3	"Automatic Control of Aircraft and Missiles", J.H. Blackelock, John Wiley & Sons	
4	"Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems", B.L. Stevens, F.L. Lewis & E.N. Johnson, John Wiley & Sons	
5	"Advanced Control of Aircraft, Spacecraft and Rockets", Ashish Tewari, Wiley- Blackwell	

Course	Course	Course	Detail
Code	Name	Outcome	
	700	C01	To classify the open, closed loop systems, various types of controllers and their application
	Control Systems	C02	To apply mathematical models for mechanical, hydraulic system to obtain transfer functions
7ANUS		C03	To sketch block diagrams and signal flow graphs to obtain transfer functions
7.8	Automatic	C04	To Predict the stability of control system employing Nyquist, polar, bode and root locus plots as stability criteria
		C05	To analyze the different auto pilot and fly-by-wire control system

Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12
C01	3	2	1	1		2				1		1
C02	2	3	1			1						1
C03	2	2	1	3		2					1	

C04	2	3	3		1			1	1
C05	2	3	1	3			2		
Average									

7ANU6.1: Non-Destructive Testing

7ANU6	CONTENTS									
.1										
	Introduction to NDT: Fundamentals of non-destructive testing and evaluation,									
	physical characteristics of materials and their applications in NDT, advantages and limitations of NDT; Visual inspection techniques.									
	Liquid Penetrant Testing: Basic principle; types and properties of liquid penetrants, methods of application; Developer application and inspection, interpretation of results.									
	Magnetic Particle Testing: Basic theory of magnetism; Magnetization methods; Field indicators, particle application, inspection.									
	Eddy Current Testing: Basic principle, Faraday's law, inductance, Lenz's law, self and mutual inductance, impedance plane; Generation of eddy currents, properties of eddy currents, eddy current sensing elements, inspection system and probes, eddy current instrumentation; System calibration; Applications and limitations.									
	Ultrasonic Testing: Basics of ultrasonic waves; Ultrasonic equipment; Test method, variables affecting an ultrasound test; Distance and Area calibration; Weld inspection by UT.									
	Radiography: X-rays and their properties; X-ray generation, absorption and atomic scattering; Image formation, image quality; Digital Radiography, neutron radiography; Image interpretation; Radiation Shielding; Radiography applications, limitations and safety.									
	Special Techniques: Acoustic Emission testing; Holography; Thermography									
	Magnetic Resonance Imaging; In-situ metallography.									

	Industrial Applications of NDT: Span of NDT activities in railways, nuclear and chemical industries, aircraft and aerospace industries, automotive industries, offshore gas and petroleum projects, coal mining industry; NDT of pressure	
	vessels, castings, welded constructions. TOTAL	40
	TEXT BOOK	
1	"Non-Destructive Testing", Louis Cartz, ASM International	
2	"Non-Destructive Test and Evaluation of Materials", J. Prasad & C.G.K. Nair, McGraw Hill Education	
	REFERENCE BOOK	
S.NO.	Name of author/Book/publisher	
1	Non-Destructive Testing Techniques", Ravi Prakash, New Age International Publishers	
2	"Introduction to Non-Destructive Testing: A Training Guide", P.E. Mix, Wiley	
3	"Aeronautical Applications of Non-Destructive Testing", Abbas Fahr, DEStech Publications	
4	"Practical Non-Destructive Testing", B. Raj, T. Jayakumar & M. Thavasimuthu, Narosa Publishing House 5. "Non-Destructive Testing", B. Hull & V. John, Springer-Verlag New York Inc.	

Course Code	Course Name	Course Outcome	Detail
	ı	CO1	Enumerate different types of defects in metals and composites and describe techniques to locate surfacedefects
—	Aerial S	CO2	Apply radiographic technique to detect the defects.
6ANU6.1	anned A Vehicles	CO3	Illustrate the methodology of ultrasonic testing to evaluate size and location of defects.
6 A	Unmanned Vehicl	CO4	Interpret the presence of defects using magnetic particle inspection.
	U	CO5	Identify the crack using eddy current testing system and select a suitable NDT method for different applications.

es	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
⁷ ehicl	C01	2	3	1	3	1									
rial V	C02	2	3	1	3	1									
Unmanned Aerial Vehicles	C03	2	3	1	3	1									
	C04	2	3	1	3	1									
	C05	2	3	1	3	1									
	Average	2	3	1	3	1									

7ANU7: Computational Fluid Dynamics Lab

6ANU7	CONTENTS	HOU
		RS
	 Introduction to ANSYS Fluent, its features and different options Generation of structured and unstructured mesh over simple objects Boundary layer resolution and grid independence test Flow over flat plate and use of transition models Inviscid and viscous flow over circular cylinder at different Reynolds number Laminar and turbulent flow in a pipe Flow over airfoil at high Reynolds number and use of different turbulence models Supersonic flow past wedge and cone Transonic flow over subsonic and supercritical airfoils Flow over finite wing and effect of aspect ratio and taper ratio □ Flow in nozzles and diffusers Writing codes in C/ C++/ MATLAB for simple flow fields 	

	REFERENCE BOOK							
S.NO.	Name of author/Book/publisher							
1	"ANSYS Fluent Tutorial Guide", Sylvain Serra							
2	"ANSYS FLUENT 14.0 Simulation Analysis and Design Optimization", S.B. Cheng & L.M.G. Bian, Machinery Industry Press							
3	"FLUENT Learning Modules", S. Weidner, Cornell University Confluence (https://confluence.cornell.edu/display/SIMULATION/FLUENT+Learning+Modules)							
4	"ANSYS Workbench 14.0 for Engineers and Designers", Sham Tickoo, Dreamtech Press							

Course	Course	Course	Detail
Code	Name	Outcome	
	Lab	C01	Analyze Basic geometry and modeling approach using commercial software
		C02	Solve lid driven cavity, backward facing step and pipe flow problems
6ANU7	Propulsion	C03	Solve two- and three-dimensional fluid flow and heat transfer analysis problems
9	Aerospace	C04	Demonstrate the ability to evaluate and interpret CFD analysis results for design and evaluation purposes
	Ae	C05	

ace	Outcome	P01	P02	P03	P04	P05	P06	P07	P0 8	P09	P1 0	P11	P12	PSO 1	PSO2
erosp	C01	3	3	2	2	3				2			2		
A 4	C02	3	3	2	2	3				2			2		

C03	2	3	2	2	3		2		2	
C04	3	3	3	2	3		2		3	
C05										
Average	3.0	3.0	2.0	2.0	3.0		2.0		2.3	

7ANU8 Aircraft Design Lab

7ANU8	Aircraft Design Lab	HOURS
	Conceptual design based on preliminary mission requirements	
	Survey of existing vehicular configurations (in similar category)	
	Lofting (preliminary layout sketches)	
	Preliminary weight estimation	
	Optimization of wing loading and thrust loading	
	Selection of engine	
	Selection of wing parameters	
	Selection of fuselage parameters and internal layout	
	Location of engines and landing gear	
	Design of tail areas and control surfaces	
	Revised three-view drawing	
	Estimation of weights of various components	
	Calculation of centre of gravity and its shift	
	Estimation of aerodynamic characteristics and performance evaluation	
	Estimation of spanwise load distributions on wing and tail	
	V-n diagram for the design study	
	Estimation of gust and manoeuvrability envelopes	
	 Internal design of wing and fuselage considering buckling loads and margin of safety 	
	Estimation of cost and airworthiness of airplane, trade-off studies	
	TOTAL	40

	TEXT BOOK	
1	Aircraft Design: A Conceptual Approach", D.P. Raymer, AIAA Educational Series	

	REFERENCE BOOK	
S.NO.	Name of author/Book/publisher	
1	"Fundamentals of Aircraft Design", L.M. Nicolai, METS Inc.	
2	"Synthesis of Subsonic Airplane Design", E. Torenbeek, Springer	
3	"Aircraft Conceptual Design Synthesis", D. Howe, Wiley	
4	"Aircraft Design Projects: For Engineering Students", L.R. Jenkinson & J.F. Marchman, AIAA Education Series	
5	"Civil Jet Aircraft Design", L.R. Jenkinson, P. Simpkin & D. Rhodes, AIAA Education Series	

Course	Course	Course	Detail
code	Name	Outcome	
	ab	C01	Compare the different types of aircraft configurations based on mission requirements
&	ign L	C02	Apply the primary design concept on aircraft design methods
7ANU8	Aircraft Design Lab ab	C03	Analyze the aircraft different component like wing, fuselage, engine, landing gear and control surfaces based on aircraft detail design knowledge
	7	C04	Determine the aircraft different components weight, aircraft center of gravity and performance parameter.
		CO5	Discuss the different load on aircraft components and trade-off studies

Aircraft Design Lab	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
	C01	3	3	2	1		1	1				1	
	C02	2	1	2	3		1				1		1

C03	3	2	3	2	1	1		1	1	
C04	1	3	1	2	3			1		
C05	5	3	1	1				1		1
Ave	erage									

7ANU9 FEM Lab

7ANU9	CONTENTS	HOU
		RS
	Introduction of GUI of the software ANSYS	
	 Analysis of trusses 	
	 Analysis of beams and frames (bending and torsion problems) 	
	 Plane stress and plane strain analysis problems 	
	 Problems leading to analysis of axisymmetric solids 	
	 Problems leading to analysis of three-dimensional solids 	
	Heat transfer problems	
	 Model analysis problems for natural frequency determination 	

	TEXT BOOKS	
1	"Finite Element Analysis: Theory and Application with ANSYS", S. Moaveni, Pearson Education Limited	
2	"Engineering Analysis with ANSYS Workbench 18", G. Zhang, College House Enterprises	
	REFERENCE BOOKS	
S.NO.	Name of author/Book/publisher	
1	"Finite Element Modeling and Simulation with ANSYS Workbench", X. Chen & Y. Liu, CRC Press	

3	"Working with ANSYS: A Tutorial Approach", D. Zindani, A.K. Roy & K. Kumar,	
	I.K. International Publishing House Pvt. Ltd.	
4	"ANSYS Workbench 14.0 for Engineers and Designers", S. Tickoo, Dreamtech Press	
5	"Introduction to ANSYS 16.0", R.B. Choudary, I.K. International Publishing House Pvt. Ltd.	

Course Code	Course Name	Course Outcome	Detail
		C01	Analyze beams and frames using commercial FEM software
		C02	Analyze plane stress, plane strain and axisymmetric structural problems
7ANU9	M Lab	C03	Solve multi-dimensional heat transfer and modal analysis problems by FEA
77	FEM	C04	Demonstrate the ability to evaluate and interpret FEA analysis results for design and evaluation purposes
		C05	

	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P0 8	P09	P1 0	P11	P12	PSO 1	PSO2
	C01	3	3	2	2	3				3			2		
qap	C02	3	3	2	2	3				2			2		
FEM Lab	C03	3	3	2	2	3				2			2		
Ŧ	C04	3	3	2	2	3				2			2		
	C05														
	Average	3	3	2	2	3				2			2.3		

7ANU10 Minor Project

(3L+0T)

7ANU	Minor Project	HOURS
10		
	 The students are required to work in groups of not more than three students on a project related to Aerospace Engineering under the guidance of a faculty member in one of the labs in the college. The project topic should be such that it enables them to bring into practice the theoretical concepts learnt as well as learn new concepts and has to be approved by Project Coordinator. The students are required to meet their project guides at least once in a fortnight and maintain a record of the same in a project diary. A feasible working strategy should be developed and presented within a month. At least two mid-semester presentations should be organized by Project Coordinator to review the progress during the semester. A technical report and presentation has to be submitted at the end of the semester for evaluation of the work. The Project Coordinator should preferably be one of the members of the external grading committee. 	40

Course	Course	Course	Detail				
code	Name	Outcome					
		C01	Identify a real-life problem or industrial problem.				
U10	Project	C02	Collect and analysis possible solutions, examine technical and economic feasibility of the solution.				
7ANU10	Minor]	C03	Design promising solution considering environment and sustainability.				
		C04	Prepare DPR (Detailed Project Report) and present.				
		CO5 Grasp the norms for performing in team.					

	Course Outcome	P01	P0 2	P03	P04	P0 5	P06	P07	P0 8	P0 9	P10	P1 1	P12	PSO1	PSO 2
Minor Project	C01	2	3			1	1	2	1	3	1	2	3		
	C02	2	3	3	1	1	1	2	1	3		2	3		
	C03	2	3	3	3	2	2	3	1	3		3	3		
Min	C04	2	2	1	1	1			1	2	3	2	3		
	C05								1	3	2	1	2		
	Average	2	2. 8	2.3	1.7	1. 3	1.3	2.3	1	2. 8	2	2	2.8		

7ANU11 Practical Training

(3L+0T)

7ANU	Practical Training	HOURS
11		
	All the students are required to give a presentation on the concepts learnt during industrial training after 3 rd year, and to submit a report in standard format covering their entire work during the period. TOTAL	40

Course	Course	Course	Detail
code	Name	Outcome	
7ANU11	7ANU11 Practical Training		Explore the recent technological development through visiting the industries
7A.	Pra Tr	C02	Discover the various theoretical aspects in real time industrial scenario

	CO5	
	C04	Collect data and prepare reports on the experiments/field visit.
	C03	Simulate and practice the concept in real situations

	Course Outcome	P01	P0 2	P03	P04	P0 5	P06	P07	P0 8	P0 9	P10	P1 1	P12	PSO1	PSO 2
ing	C01	1	1				1	2		2			2		
rain	C02	2	2	1		2	2	1		2	2		3		
cal T	C03	2	3	2	2	3	1	1	1	2	2		2		
Practical Training	C04	2	2	1	3	3	1			2	2		2		
Ъ	C05														
	Average	1.8	2	1.3	2.5	2. 7	1.3	1.3	1	2	2.5	2	2.3		

8ANU1: Avionics

8ANU1	Avionics	HOURS
	Introduction to Avionics: Basics of avionics, need of avionics in civil and military	
	aircraft and space systems; Cockpit basics; Integrated avionics architecture, typical avionics system and subsystems.	
	Digital Avionics Bus Architecture: Data buses MIL-STD-1553B, RS-232, RS-422, RS-485, AFDX, ARINC 664, ARINC 429, ARINC 629; Aircraft system interface.	
	Flight Deck and Display Systems: Flight deck display technologies, CRT, LED, LCD, Touch screen, Head up display, Electronic instrumentation systems.	

	Audio and Communication Systems: Aircraft audio systems, basic audio transmitter and receiver principles, VHF communication system, UHF communication systems.	
	Ranging and Landing Systems : VHF omnidirectional range, VOR receiver principles, distance maturity equipment, principles of operation; Instrument landing system, localizer and glide slope.	
	Position Inertial and Navigation System : Satellite navigation systems, GPS principles, triangulation, position accuracy, applications in aviation; Principle of operation of INS, navigation over earth, components of inertial navigation systems, accelerometers, gyros and stabilized platform.	
	Surveillance System : ATC surveillance systems, principles and operations; Standards; Collision avoidance system; Ground proximity warning system.	
	Auto Flight System: Basic principles of auto pilot, longitudinal and lateral auto pilot; Automatic flight control system; Flyby-wire and fly-by-light technologies; Flight director systems; Flight management systems	
	TOTAL	40
	TEXT BOOK	
1	TEXT BOOK "Introduction to Avionics Systems", R.P.G. Collinson, Springer	
1 2		
	"Introduction to Avionics Systems", R.P.G. Collinson, Springer	
	"Introduction to Avionics Systems", R.P.G. Collinson, Springer "Introduction to Avionics", D.R. Cundy & R.S. Brown, Pearson	
2	"Introduction to Avionics Systems", R.P.G. Collinson, Springer "Introduction to Avionics", D.R. Cundy & R.S. Brown, Pearson REFERENCE BOOK	
S.NO.	"Introduction to Avionics Systems", R.P.G. Collinson, Springer "Introduction to Avionics", D.R. Cundy & R.S. Brown, Pearson REFERENCE BOOK Name of author/Book/publisher	
S.NO. 1	"Introduction to Avionics Systems", R.P.G. Collinson, Springer "Introduction to Avionics", D.R. Cundy & R.S. Brown, Pearson REFERENCE BOOK Name of author/Book/publisher Digital Avionics Handbook", C.R. Spitzer, U. Ferrel & T. Ferrel, CRC Press	

Course	Course	Course	Detail
Code	Name	Outcome	
		CO1	Demonstrate the working of simple digital circuits using logic gates.
1	S	CO2	Create assembly language programs with microprocessor for simple applications.
6ANU1	Avionics	CO3	Demonstrate the integration of avionic systems with data buses.
9	\	CO4	Explain the working of aircraft communication and navigation systems.
		CO5	Discuss the autopilot systems in aircraft.

	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
70	C01	S	-	-	-	S	-	1	-	-	-	-	-	М	-
Avionics	C02	-	-	W	-	М	-	-	-	-	-	-	-	М	-
Av	C03	М	-	-	-	М	-	-	-	-	-	-	-	W	-
	C04	М	-	-	-	-	-	-	-	-	-	-	-	W	-
	C05	-	1	-	1	8	1	1	1	ı	ı	1	1	1	М
	Average														

8ANU2: REFRIGERATION AND AIR-CONDITIONING

(3L+1T)

8ANU2	CONTENTS	HOURS
	Introduction: Brief history and need of refrigeration and air conditioning, methods of producing cooling, ton of refrigeration, coefficient of performance, types and application of refrigeration and air condensing systems.	
	Refrigerants: Classification, nomenclature, desirable properties; Eco-friendly refrigerants and environmental issues of refrigeration & air conditioning industry.	
	Vapour Compression Refrigeration (VCR) Systems: Simple vapour compression refrigeration systems; Analysis of VCR cycle considering degrees of subcooling and superheating, VCR cycle on P-V, T-s and P-h diagrams; Actual VCR cycle; Comparison of VC cycle with air refrigeration cycle.	
	Aircraft Refrigeration System: Necessity of cooling the aeroplane; Reversed Carnot cycle and its limitation; Reversed Brayton cycle; Bell-Coleman cycle; Aircraft refrigeration systems; Working and analysis of simple, bootstrap, reduced ambient and regenerative air refrigeration systems.	
	Psychrometry and Air-conditioning Processes : Properties of moist air: specific humidity, dew point temperature, degree of saturation, relative humidity, wet bulb temperature; Psychrometric chart; Psychrometry of air conditioning processes; Mixing process and other basic processes in conditioning of air.	
	Human Comfort : Selection of inside design conditions; Thermal comfort, heat balance equation, factors affecting thermal comfort, effective temperature, comfort chart and factors governing effective temperature; Selection of outside design conditions.	
	Air-Conditioning Load Calculations: Outside and inside design conditions, sources of heating load, sources of cooling load, heat transfer through structure, solar radiation, electrical applications, infiltration and ventilation, heat generation inside conditioned space.	
	Air Conditioning Systems and Duct Design: Classifications, equipment selection; Air distribution system, all-air, all-water and air-water systems, single and central air conditioning systems; Duct systems design; Filters; Refrigerant piping; Temperature, pressure and humidity sensors; Actuators and safety controls, accessories.	

	TOTAL	40
	TEXT BOOK	
1	"Refrigeration & Air Conditioning", R.C. Jordan & G.B. Priester, Prentice Hall of India	
2	"Refrigeration & Air Conditioning", C.P. Arora, McGraw Hill Education	
	REFERENCE BOOK	
S.NO.	Name of author/Book/publisher	
1	"Refrigeration and Air Conditioning", W.F. Stoecker & J.W. Jones, McGraw Hill Education	
2	"Basic Refrigeration and Air Conditioning", P.N. Ananthanarayanan, McGraw Hill Education	
3	"Refrigeration and Air Conditioning", Manohar Prasad, New Age International Private Limited	
4	"Refrigeration and Air Conditioning", R.C. Arora, Prentice Hall India Learning Private Limited	
5	"Refrigeration and Airconditioning: High Side Design", Arvind Agrawal, New Academic Science Limited	

Course	Course	Course	Detail
Code	Name	Outcome	
	Air-	CO1	Correlate the knowledge about the basic components of refrigeration system and calculate its coefficients of performance.
72	n and	CO2	Analyze performance of vapor compression refrigeration system.
8ANU2	geration and Conditioning	CO3	Acquire knowledge about different kinds of aircraft refrigeration systems.
	Refrigeration Conditio	CO4	Understand and analyze the psychometric processes used in refrigeration and air-conditioning system.
	Ä	CO5	Compute cooling and heating loads in an air conditioning system.

Air-	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
	C01	3	3	2			2	2					1	-	
	C02	3	3										2	-	
geration and Conditioning	C03	3	2	2	1		2	2				1	2	-	1
Refrigeration Condition	C04	3	3	1	2								1	-	1
	C05	3	3	1	2								1	-	
	Average	3	2.8	1.5	1.67		2	2				1	1.4	-	1

8ANU3: Airport Management and Aircraft Maintenance

(3L+1T)

7ANU3	Airport Management and Aircraft Maintenance	HOUR
		S
	Introduction: The evolution of aviation, growth drivers, issues and challenges; Global aviation industry, major players in aviation industry in India, SWOT analysis of the different airline companies in India, market potential and current challenges of airline industry in India Aircraft Rules: ICAO, international environmental protection policies; Airport Authority of India, DGCA, Airport Economic Regulatory Authority of India; Aircraft Act 1934, The Aircraft Rules 1937, Civil Aviation Requirements (CAR); Aircraft manuals, Aeronautical Information Circulars. Airport Planning and Management: Functions of airports; Airport layouts and configurations; Airport terminal planning; Various airport services; Effect of privatization; An overview of any international airport. Air Traffic Control: Principles of air navigation and air traffic control; Classification of ATS air spaces; Assignment of cruising levels; Air traffic zones and approach areas, methodology for slot allocation, aerodrome data; Airport & aircraft security, crisis management at airports.	

	Airworthiness: Knowledge of various mandatory documents issued to establish airworthiness of aircraft parts; Airworthiness requirement for gliders, micro light aircraft, ferry flight and hot air balloons; Load and trim sheet; Aircraft inspection, cockpit check list, preparation and use of concept and emergency check list, defect management; Various logbooks required to be maintained for aircraft and their purpose. Maintenance of Aircraft Structural Components: Types of maintenance schedules, damage investigation, nondestructive testing; Sheet metal repair and maintenance; Maintenance and repair of plastic components; Inspection and repair of composite components; Installation and maintenance of instruments; Inspection and maintenance of various aircraft systems such as power plant, landing gear system, air-conditioning and pressurization system, fuel & hydraulic system, position and warning system, auxiliary systems. Licensing of Aircraft Maintenance Engineers: Knowledge of privileges and responsibilities of the various categories of AME licence and approved persons; Duties of an aircraft maintenance engineer licence holder; Student flight engineer; Validation of foreign AME licence.	
	TOTAL	40
	TEXT BOOKS	
1	"Airport Planning and Management", S.B. Young & A.T. Wells, McGraw-Hill Education	
2	"Aviation Maintenance Management", H.A. Kinnison & T. Siddiqui, McGraw Hill Education	
	REFERENCE BOOKS	
S.NO.	Name of authors/Books/publishers	
1	"Fundamentals of Aircraft Maintenance Management", H. Timothee, Notion Press	
2	"Airport Management", C.D. Prather, Aviation Supplies & Academics Inc.	
3	"Aircraft Maintenance and Repair", M. Kroes & R. Sterkenburg, McGraw Hill Education	
4	"Aviation Management: Global and National Perspectives", Ratandeep Singh, Kanishka Publishing House 5. "Air Transportation: A Management Perspective", J.G. Wensveen, Routledge	

Course	Course	Course	Detail
Code	Name	Outcome	
		C01	The state of the s
		C01	The students were able to understand about the Aviation's History, its
	pu		major players and it current trends and challenges
	and		
	ent	C02	It enables the student to do the Planning of the Airport and to perform
m	Airport Management ar Aircraft Maintenance		operations involved in the Airport.
8ANU3	nag Íain	C03	It enables the students to know about various logbooks used in airline
8A.	ſaι τ Ν		industry
	raf	C04	It enables the students to understand and adhere to the various
	por		Regulations involved Aviation Industry for licensing of aircraft
	Lir] A		maintenance engineers.
	V	C05	It enables the students to understand about the ATC control process,
			slot allocation and DGCA etc.

rcraft	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
Airport Management and Aircraft Maintenance	C01	3	3	2	2			1		2			2		
	C02	3	3	2	2			1		2			1		
	C03	3	3	2	2					1			2		
	C04	3	3	2	2					2			1		
	C05	3	3	2	2					1			2		
Aii	Average														

8ANU4.1 Missile Technology

	CONTENTS	HOURS						
ANU4.1								
	Introduction: History of missiles, classification of missiles; Concept of guidance,							
	peaceful application of guidance; Selection of materials for missiles.							
	Major Components of Missiles: Airframe, flight control system, guidance subsystem,							
	proximity fuse, warhead, propulsion system.							
	Missile Performance: Aerodynamics characteristics of airframe components, forces and							
	moments acting on a missile while passing through atmosphere, slender body							
	aerodynamics, drag estimation; Equations of motion for three-dimensional motion through							
	atmosphere and vacuum, one-dimensional and two-dimensional rocket motions in free							
	space and homogeneous gravitational fields, description of vertical, inclined and gravity							
	turn trajectories; Effect of earth's rotation, inertial and noninertial frames, coordinate							
	transformation; Powered and unpowered flight, boost-glide trajectory, boost-sustain							
	trajectory, long range cruise trajectory, long range ballistic trajectory, re-entry conditions;							
	Brief description of fin-stabilized and spinstabilized missiles and their force systems;							
	Manoeuvring flight: flat turns, pull-ups, relation between manoeuvrability & static							
	stability margin; Multistaging of ballistic missiles, separation techniques.							
	Fundamentals of Guidance: Different phases of missile; Homing guidance categories;							
	Introduction to aerodynamic and jet control methods; Various types of aerodynamic							
	control methods for tactical and short range missiles; Various types of thrust vector control							
	methods; Interception and avoidance.							
	Rocket Propulsion: Solid, liquid, hybrid rocket motor, single base propellants, double base propellants, composite propellants, CMBD propellants and their ingredients; Propellant grains and types of burns, erosive burning, pyrotechnic devices and systems, igniter & ignition system; Propellant mass fraction, thrust coefficient, characteristic velocity, burn rate, total impulse; Types of nozzles and thrust vector control.							
	TOTAL	40						

	TEXT BOOKS	
1	"Missile Design and Systems Engineering", E.L. Fleeman, American Institute of Aeronautics & Astronautics	
2	"Missile Guidance and Control Systems", George M. Siouris, Springer	
	REFERENCE BOOKS	
S.NO.	Name of author/Book/publisher	
1	"Tactical and Strategic Missile Guidance", P. Zarchan, AIAA	
2	"Modern Missile Guidance", R. Yanushevsky, CRC Press	
3	"Automatic Control of Aircraft And Missiles", John H. Blacelock, Wiley	
4	"Missile Guidance and Pursuit: Kinematics, Dynamics and Control", N.A. Shneydor, Woodhead Publishing	
5	"Rocket Propulsion and Spaceflight Dynamics", J.W. Cornelisse, H.F.R. Schöyer & K.F. Wakker, Pitman Publishing Limited	

Course Code	Course Name	Course Outcome	Detail
		C01	The student will understand the basic concepts of missile aerodynamics.
	logy	C02	The student will know about the different configurations of missiles and will be able to estimate the drag of missiles
	Technology	C03	The student will be able to design the missile body in order to optimize performance
8ANU4.1	Missile	C04	The student will understand the significance of aerodynamics during the launching phase
3		C05	The student will be able to design appropriate stabilizers and control surfaces to fulfill the stability and control requirements of the missile

	Course Outcome	P01	P02	P03	P04	P0 5	P06	P0 7	P08	P0 9	P10	P1 1	P1 2	PSO 1	PSO2
26	C01	S	М	М	W										
Technology	C02	S	S	М	W	М								М	
	C03	S	S	М	М	М									
Missile	C04	S	S	М	М	S								М	
2	C05	S	М	М	W										
	Average														

8ANU5: Avionics Lab

(3L+0T)

8ANU5	CONTENTS										
	 Design and implementation of 4-bit adder and subtractor circuit using IC 7483 and IC 7486 Implementation of multiplexer/demultiplexer circuits Implementation of encoder/decoder circuits Design and implementation of 4-bit shift register with D-flip flops using IC 7474 Timer circuits, shift registers, binary comparator circuits Addition and subtraction of 8-bit and 16-bit numbers Sorting of data in ascending & descending order Sum of a given series with and without carry Multi-byte addition in BCD mode Interface programming with 4-digit 7-segment display and switches and LEDs 16 Channel Analog to Digital Converter & generation of ramp, square, triangular wave by Digital to Analog Converter Use of data buses for message transfer Remote Terminal Configuration of data bus 										

Course Code	Course Name	Course Outcome	Detail
		C01	Appreciate the use of microprocessors, data buses and avionics system architectures
	ap	C02	Gain knowledge about various avionics subsystems
8ANU5	Avionics La	C03	Understand the addition, subtraction concepts and storing data in microprocessor.
	Avi	C04	Design and analyze simple digital circuits
		C05	Carry out data transmission using data bus

	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
	C01	3	2	2	2	3							2		
Lab	C02	3	2	2	1	3							2		
Avionics Lab	C03	3	3	3	3	3									
Avi	C04	3	3	3	3	3									
	C05	3	2	2	2	3									
	Average														

8ANU6 Refrigeration and Air-Conditioning Lab

8ANU6	Refrigeration and Air-Conditioning Lab	HOURS
	 Study of different types of expansion devices and evaporators used in refrigeration system Evaluation of coefficient of performance of cycle and tonnage capacity of refrigeration unit Calculation of theoretical and actual value of coefficient of performance on vapour compression test rig 	

- Experiment on two-stage reciprocating compressor for determination of volumetric efficiency and effect of intercooling
- Study of cut-sectional models of reciprocating, rotary and centrifugal compressor
- Determination of coefficient of performance and refrigeration load of a chilling plant
- Determination of coefficient of performance and tonnage capacity of a mechanical heat pump
- Calculation of coefficient of performance of aqua-ammonia absorption system
- Study of various controls used in refrigeration and air-conditioning system
- Experiment on air-conditioning test rig & calculation of various performance parameters
- Study of different psychrometric processes & charts
- Study of working principle of air refrigeration system using charts
- Visit of central air conditioning plant and cold storage and detailed study of their different components.

TOTAL

40

COURSE OUTCOME

Course	Course	Course	Detail
code	Name	Outcome	
		C01	Correlate the knowledge about the basic components of
	Air-		refrigeration system and calculate its coefficients of performance.
8ANU6	and ng La	C02	Understand the thermodynamic cycle of two stage reciprocating compressors and compute the volumetric efficiency along with other types of compressors.
∞	Refrigeration Conditionir	C03	Acquire the knowledge about the performance and refrigeration load of a chilling plant, heat pump.
		C04	Study of various controls, psychometric processes used in refrigeration and air-conditioning system.

	Course Outcome	P01	P0 2	P03	P04	P0 5	P06	P07	P0 8	P0 9	P10	P1	P12	PSO1	PSO2
	Outcome		2			3			0			1			
Refrigeration and Air- Conditioning Lab	C01	2	2	2									2		
	C02	3	2	2									2		
	C03	3	2	2									2		
	C04	3	2	2									2		
Refri Cond	Average	3.0	2.0	2.0									2.0		

8ANU7 Flight Simulation Lab

8ANU7	CONTENTS									
		RS								
	Demonstration of working of ILS and VOR using flight simulator									
	• Demonstration of autopilot, ADF and other navigation instruments using flight simulator									
	 Demonstration of an aircraft starting procedure with checklist using flight simulator 									
	 Determination of an aircraft performance parameters at various flying conditions using real-time flight simulator 									
	• Execution of a complete cycle of flight profile using real-time flight simulator									
	 Demonstration of autopilot mode flight operation using flight simulator 									
	 Stability analysis using Root locus, Bode plot, Nyquist plot and Polar plot techniques 									
	Design of lead, lag and lead-lag compensator for aircraft dynamics									
	 Performance improvement of aircraft dynamics by pole placement technique 									
	 Design of displacement longitudinal and lateral autopilot 									
	 Design of automatic glide slope control system and flare control system 									
	 Analysis of actuation mechanisms of an aircraft and helicopter using Arduino 									
	with the help of Mission Planner software									
	 Estimation of aerodynamics derivatives from wind tunnel tests 									
	Assessment of dynamic signatures and impact on performance of abnormal									
	flight conditions through simulation and tests using PC-based simulation and a									
	6-DOF motion-based flight simulator									
	• Assessment and analysis of the dynamic effects of aircraft propulsion system									
	failure Simulation of effect of deploying different control surfaces									

Course Code	Course Name	Course Outcome	Detail
		C01	The student will realize the significance of an aircraft simulator
		C02	The student will know the basic flight operation procedures, instruments in an aircraft
7ANU9	1 Lab	C03	The student will know how to start, takeoff and land the aircraft
7A.	FEM	C04	The student will know to execute different maneuvers in the airplane
		C05	The student will have an understanding of the autopilot

	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2
	C01	S	S	S	S										
ab,	C02	S	S	S	S										
FEM Lab	C03	S	S	S	S									M	
=	C04	S	М	S	М	W									
	C05	S	S	М	S	М									
	Average														

8ANU8 Seminar

8ANU8	Seminar	HOURS
	 The purpose of this course is to introduce students to the field of technical research and formal documentation of research work in the form of research papers and technical reports. Every student is required to select a seminar topic in emerging areas of science and technology broadly related to Aerospace Engineering different from those already covered in previous years, with the consent of Seminar Coordinator. Each student will be allotted a faculty member to serve as Seminar Guide, under whose guidance the student is supposed to study and present the latest research work related to the topic. The student should learn to study and summarize research works related to the topic, and identify the state-of-the-art on the chosen topic. During the class timings, students will give interim presentations on their chosen topics in front of their section teachers. At least two presentations per student should be completed during the semester. By the end of the semester, every student has to prepare a Seminar Report and a Seminar Presentation. The report should formally summarize the relevant research in the area and be divided into no less than 5 chapters encompassing at least 45 pages, and its formatting should be in accordance with the guidelines provided by Seminar Coordinator. The presentation should be for about 15 minutes and include important and interesting points related to the topic and be technically perfect with proper formatting and grammar. For internal evaluation, 40 marks will be assigned by subject teacher allotted to the respective section based on the presentations given by the student during the semester, and 35 marks will be given by Seminar Guide according to his evaluation of efforts put by student. The external grading would be done by a committee of external examiners chosen by Seminar Coordinator with the consent of Head of Department, on the basis of final report and presentation. 	40

	Course Outcome	P01	P0 2	P03	P04	P0 5	P06	P07	P0 8	P0 9	P10	P1 1	P12	PSO1	PSO2
	C01	1	3	1				1	1	3	1		1		
lar	C02	1	1							3	3		1		
Seminar	C03	1	1					1	1	3	3		2		
3 2	C04	1	1			2				3	3		1		
	C05														
	Average	1	1.5	1		2		1	1	3	2.5		1.8		

Course	Course Name	Course Outcome	Detail
		C01	Review of recent industrial developments and scientific innovations.
801	C02		compile information from different sources in comprehensive manner
8ANU8	Seminar	C03	Prepare technical report
		C04	Present the identified development/innovations
		CO5	

8ANU9 Major Project

(3L+0T)

8ANU9	Major Project	HOURS
	The primary objective of this course is to develop in students the professional	
	quality of synthesis employing technical knowledge obtained in the field of	
	engineering & technology through a project work involving design and analysis	
	augmented with creativity, innovation and ingenuity.	
	 The students are required to form groups of two to four students for the project work. 	
	Each group should work under the guidance of a faculty member who will	
	serve as the project mentor. A feasible and interesting project objective	
	related to aerospace engineering should be chosen taking approval from Project Coordinator.	
	Each group should meet with its project mentor regularly and maintain the record of discussion in a project diary.	
	The Project Coordinator should call regular meetings of all groups to	
	monitor their regular progress in their projects, and give constructive suggestions as required.	
	• For internal grading, the Project Coordinator would assign marks out of 90	
	based on regular assessment throughout the semester during project review	
	meetings, and the project mentor would give marks out of 60 to each student	
	based on his perception of sincerity of each student.	
	• Each group has to prepare a technical report according to the guidelines	
	provided by Project Coordinator. The report should contain introduction to	
	the topic, technical background, objective, working methodology, detailed	
	calculations, data analysis, results, discussion and the final conclusion of project.	
	The external evaluation would be done by external examiners allocated by HoD	
	based on the final presentation, project demonstration and technical report. 30	
	marks may be allocated to the report, 30 marks to the presentation and 30 marks	
	to the successful demonstration and realization of desired objectives TOTAL	40
	TOTAL	••

Course	Course	Course	Detail
code	Name	Outcome	

		C01	Arrange necessary resources and prepare project plans
8ANU9	Project	C02	Develop the required product/solution considering technical/financial viability
8A]	Major	C03	Test and validate the solutions based on experiment and field trials
		C04	Prepare project report and present results/solution.
		CO5	

	Course Outcome	P01	P0 2	P03	P04	P0 5	P06	P07	P0 8	P0 9	P10	P1 1	P12	PSO1	PSO 2
	C01	1					1	2	1	2	2	3	3		
oject	C02	2	2	3	1	2		1	1	3	2	2	3		
Major Project	C03	2	2	1	3	2		1	1	3	2	1	3		
Maj	C04	2		1	1	1			1	2	3	1	3		
	C05														
	Average	1.8	2	1.7	1.7	1. 7	1	1.3	1	2. 5	2.3	1. 8	3		