University Teaching Departments Rajasthan Technical University, Kota

III - VIII Semester Syllabus for Bachelor of Technology in Aeronautical Engineering effective from session 21-22

B. Tech. Aeronautical Engineering, III Semester

Codes	Syllabus
MTL102	Advanced Mathematics for Aeronautical Engineering
	Laplace Transform: Definition and existence of Laplace transform, properties and formulae, unit step function, Dirac Delta function, Heaviside function; Inverse Laplace transform; Convolution theorem; Application of Laplace transform to ordinary differential equation.
	Fourier Transform: Fourier complex, sine and cosine transform, properties and formulae; Inverse Fourier transforms, Convolution theorem; Application of Fourier transforms to partial differential equation (1D heat and wave equations).
	Z-Transform: Definition, properties and formulae; Convolution theorem; Inverse Z-transform, application of Z-transform to difference equation.
	Numerical Analysis: Interpolation; Difference operators: forward, backward, central, shift and average operators; Newton's forward and backward interpolation formulae; Gauss's forward and backward interpolation formulae; Stirling's formula; Lagrange interpolation formula for unequal intervals; Inverse interpolation.
	Numerical Differentiation: Newton's, Gauss's and Stirling's formula.
	Numerical Integration: Trapezoidal Rule; Simpson's 1/3 and 3/8 rule.
	Numerical Solution of ODEs of First Order: Picard's method; Euler's method; Modified Euler's method; Runge-Kutta fourth order method; Milne's method.
	TEXT BOOKS:- 1. "Advanced Engineering Mathematics", R.K. Jain &S.R.K. Iyengar, Narosa Publications
	 Advanced Engineering Mathematics", C.N. Jan & S.K.K. Tyengar, Narosa Fublications "Advanced Engineering Mathematics", O'Neil, Cengage Learning India
	REFERENCE BOOKS:-
	1. "Advanced Engineering Mathematics", E. Kreyszig, Wiley
	2. "Advanced Engineering Mathematics", M. Greenberg, Pearson Education
	3. "Advanced Engineering Mathematics", D.G.Zill& W.S. Wright, Jones & Bartlett India Private Limited
	4. "Higher Engineering Mathematics", B.V. Ramana, McGraw Hill Education
HUL 202	5. "Engineering Mathematics", S. Pal & S.C. Bhuria, Oxford University Press
	Economics and Financial Management
	AS PER UD RTU SCHEME of 2021-22
AEL201	Incompressible Fluid Mechanics
	Fluid Properties: Concept of fluid and flow, ideal and real fluids, continuum concept;Pressure, density, temperature, viscosity, compressibility, specific heats,capillarity and surface tension; Newtonian and non-Newtonian fluids.

	Fluid Statics: Pascal's law; Hydrostatic equation, hydrostatic forces on submerged surfaces, barometer, manometer; Buoyancy.
	Fluid Kinematics: Eulerian and Lagrangian description of fluid flow; Streamline, streakline and path line, equation of streamline, different types of flows; Conservation of mass in a control volume; Differential equation of continuity; Acceleration, rotation and strain rate of a fluid particle.
	Fluid Dynamics: Linear and angular momentum conservation equation in integral form; Euler's equation; Bernoulli's
	equation;Conservation of energy; Flow measuring devices –pitot tube, venturimeter, orificemeter. Viscous Flow:Navier-Stokes equation, unidirectional flow between stationary and moving parallel plates, flow through pipes, Hagen-
	Poiseuillelaw;Reynolds number and its significance, laminar to turbulent transition, description of turbulent flow; Concept of boundary layer, boundary layer equations, displacement, momentum and energy thickness, boundary layer separation.
	Dimensional Analysis: Fundamental and derived units and dimensions; Dimensional homogeneity; Dimensional analysis using Rayleigh
	method andBuckingham-II theorem, significance of dimensionless groups, important dimensionless
	numbers;Geometric, kinematic and dynamic similarity, model testing.
	TEXT BOOKS:- 1. "Fluid Mechanics", F.M. White, McGraw Hill Publishing Company Ltd.
	2. "Fluid Mechanics: Fundamentals and Applications", Y.A. Cengel&J.M. Cimbala, McGraw Hill Education
	REFERENCE BOOKS:-
	1. "Mechanics of Fluids", I.H. Shames, McGraw Hill Publishing Company Ltd.
	 "Fluid Mechanics", P.K. Kundu and I.M. Cohen, Academic Press "Fluid Mechanics", J. F. Douglas, Pearson education
	4. "Introduction to Fluid Mechanics", J.A. Fay, MIT Press
	"Introduction to Fluid Dynamics", R.W. Fox, A.T. McDonald, P.J.Pritchand, McGraw Hill
AEL202	Mechanics of Solids
	Introduction: Concept of stress, normal stress and shear stress, stress tensor; Concept of strain, normal strain and shear strain, strain
	tensor; Stress-strain diagrams, Hooke's law, Modulus of elasticity, Poisson's ratio, bulk modulus, modulus of rigidity; Different types of
	loadings and sectional resultants, thermal stresses.
	Transformation of Stress and Strain: Mohr's circle for stress and strain; Principal stresses, maximum shearing stress, plane stress and
	plane strain; Stresses in thick and thin-walled pressure vessels.
	Stresses in Beams: Shear force and bending moment diagrams for simply supported and cantilever beams with concentrated, uniformly
	distributed and variable loads; Theory of pure bending, bending stress variation in cross-section; Transverse shear stress and its
	distribution in different sections; Composite beam. Deflection of Beams: Deflection in simply supported beams and cantilever with concentrated loads, uniformly distributed loads and
	their combination.
	Columns: Buckling of columns, Euler's formula for pin-ended columns and its extension to columns with other end conditions.

	Torsion: Stresses and deformation in circular and hollows shafts, angle of twist; Torsion in composite shafts; Saint-Venant's theorem.
	 TEXT BOOKS:- 1. "An Introduction to the Mechanics of Solids", S.H. Crandall, N.C. Dahl, T.J. Lardner & M.S. Sivakumar, McGraw-Hill
	 All Introduction to the Mechanics of Solids , S.H. Crandall, N.C. Dani, T.J. Lardner & M.S. Sivakumal, McGraw-Hill "Fundamentals of Solid Mechanics: A Treatise on Strength of Materials", M.L. Gambhir, PHI Learning
	REFERENCE BOOKS:-
	1. "Mechanics of Materials", S.P. Timoshenko & J.M. Gere, CBS Publishers
	2. "Mechanics of Materials", Beer, Johnston, Dewolf& Mazurek, Tata McGraw Hill
	3. "Strength of Materials", Sadhu Singh, Khanna Publishers
	4. "Mechanics of Materials", R.C. Hibbeler, Pearson
	"Mechanics of Solids", T.J. Lardner & R.R. Archer, McGraw-Hill College
AEL204	Introduction to Aeronautics
	History of Aviation: Brief history of flight vehicle development; Developments in aerodynamics, materials, structures and propulsion over the years; Indian aerospace activities; Aerospace applications.
	Aircraft Configurations: Classification of aircraft; Functions of major components of airplane; Basic flight instruments, different types
	of air speeds.
	Standard Atmosphere: Physical properties and structure of atmosphere; Geometric and geopotential altitude; Standard atmosphere,
	variation of temperature, pressure and density; Pressure, density and temperature altitudes.
	Basic Aerodynamics: Introduction to principle of flight, streamlined and bluff bodies, laminar and turbulent flows, boundary layer
	separation and control;Lift, drag and moment, non-dimensional coefficients; Airfoil, airfoil geometry, flow over airfoil, centre of pressure and aerodynamic centre, airfoil nomenclature; Wings, wing geometry, flow over finite wing; Propagation of sound, different
	flight regimes, wave drag; Types of drag, methods to reduce drag.
	Aircraft Structures: Basic functions of aircraft structure; Principle types of construction; Constructional features of conventional aircraft; Use of metallic, non-metallic and composite materials; Introduction to landing gears.
	Aerospace Propulsion: Fundamental gas turbine cycle and propulsion techniques; Mechanism of thrust production in propellers and jet engines, comparative merits; Different types of aircraft engines; Principle of operation of rocket, rocket engine, exploration into space.
	Fundamentals of Flight Mechanics: Forces and moments on airplane, significance of L/D ratio, drag polar; High lift devices; Equations
	of motion; Steady level flight; Climbing flight, absolute and service ceilings; Gliding flight; Turning flight; Concepts of stability and
	control; Primary and secondary control surfaces; Longitudinal and lateral-directional stability and control.
	TEXT BOOKS:-
	1. "Introduction to Flight", J.D. Anderson, McGraw Hill Education
	2. "Fundamentals of Flight", R.S.Shevell, Pearson Education
	REFERENCE BOOKS:-
	1. "Flight without Formulae", A.C. Kermode, Pearson Education
	2. "Understanding Flight", D. Anderson & S. Eberhardt, McGraw HillEducation
	3. "The Airplane: A History of its Technology", J.D. Anderson, AIAA

	4. "Flight: The Complete History of Aviation", R.G. Grant, DK Publishing "Introduction to Aerospace Engineering with a Flight Test Perspective", Stephen Corda, Wiley-Blackwell
AEP205	Object Oriented Programming Lab
1111200	Use of functions, arrays, strings etc.
	 Use of nested loops in applications
	Brief introduction to pointers and referencing
	 Defining class and objects; use of objects as function parameters; friend functions
	 Different types of inheritance
	Constructors and destructors
	• Function and operator overloading
	• Introduction to algorithms such as searching algorithms (linear search and binary search) and sorting algorithms
	TEXT BOOKS:-
	1. "Object Oriented Programming with C++", E. Balagurusamy, McGraw Hill Education
	2. "Let us C++", Y.P. Kanetkar, BPB Publications
	REFERENCE BOOKS:-
	1. "Computer Science with C++ for Class XI", S. Arora, Dhanpat Rai Publications
	2. "C/C++ Programmer's Reference", H.Schildt, McGraw-Hill Professional
	3. "C++ Standard Library: A Tutorial and Reference", N.M. Josuttis, Addison-Wesley Professional
	4. "C++ Programming Simplified", V.Thada, College Book Centre
	"Object Oriented Programming in C++", Robert Lafore, Pearson Education India
AEP206	Computer Aided Design Lab
	 Introduction and different features of the CAD Software (AutoDesk Inventor/ SolidWorks/ CATIA)
	• 2-D Drafting
	• 3-D modelling
	• Assembly modelling
	 Feature modification and manipulation Detailing
	Detailing Surface modelling REFERENCE
	Surface modellingREFERENCE
	BOOKS:-
	1. "AutoCAD 2019 for Beginners", Cadfolks, Createspace Independent Publishing Platform
	2. "AutoCAD 2019 Beginners Guide", Amit Bhatt, Createspace Independent Publications
	 "Mastering AutoCAD 2019 and AutoCAD LT 2019", G. Omura & B.C. Benton, Wiley "SolidWorks 2018 For Designers", Sham Tickoo, BPB Publications
	4. Sondworks 2018 For Designers', Sham Tickoo, BPB Publications 5. "Catia V5-6r2017 For Designers", Sham Tickoo, Global Books & Subscription Services
TDN109	
TPN102	Soft Skill Development -1 Students should be acquainted with the basic skills of professional communication such as:
	Students should be acquainted with the basic skills of professional communication such as:-

	 Writing formal applications Email writing Professional telephonic conversation Preparing and giving presentations Resume making Group discussions Personal interviews Importance of body language in communication 	
SAA100	SODECA (Anandam) AS PER UD RTU SCHEME of 2021-22	

B. Tech. Aeronautical Engineering, IV Semester

CEL 101	Enviornmental Science
	AS PER UD RTU SCHEME of 2021-22
HUL201	General Studies
	AS PER UD RTU SCHEME of 2021-22
	Numerical Techniques
	AS PER UD RTU SCHEME of 2021-22
AEL210	Engineering Thermodynamics
	Basic concepts: Thermodynamic system and control volume, open, closed and isolated systems; Thermodynamic
	properties, state and path variables, processes and cycles; Temperature and zeroth law of thermodynamics; Quasi-
	static process; Equation of state of perfect gas, difference between gas & vapour.
	First Law of Thermodynamics: First law for a closed system undergoing a change of state, heat and work,
	mechanical and non-mechanical forms of work; Concept of internal energy of a system; Definitions of enthalpy
	and specific heats; First law applied to flow processes (control volume systems).
	Second Law of Thermodynamics: Kelvin-Plank and Clausius statements, heat engines, refrigerator and heat
	pump;Reversible and irreversible processes, availability, irreversibility; Thermodynamic temperature
	scale;Introduction to entropy,principle of increase of entropy,Clausius inequality;Carnot cycle, efficiency of
	Carnot engine; Maxwell's relations.
	Properties of Steam: Critical state, sensible heat, latent heat, saturated & superheated steam, wet steam, dryness
	fraction, internal energy of steam, Mollier chart; Work andheat transfer during various thermodynamics processes
	with steam as working fluid; Clausius-Clapeyron equation and Joule-Thomson coefficient.
	Air Standard Cycles:Otto cycle; Diesel cycle; Stirling and Ericsson cycles; Brayton cyclewith intercooling, reheat andregeneration.
	Vapour Cycles: Simple & modified Rankine cycle with reheat and
	regeneration.
	TEXT BOOKS:-
	1. "Thermodynamics: An Engineering Approach", Y.A. Cengel&M.A. Boles, McGraw Hill Education
	2. "Engineering Thermodynamics", P.K. Nag, McGraw Hill Education
	REFERENCE BOOKS:-
	1. "Fundamentals of Classical Thermodynamics", G.J. Van Wylen and R.E. Sonntag, John Wiley& Sons
	2. "Thermodynamics", W.C. Reynolds & H.C. Perkins, McGraw-Hill
	3. "Engineering Thermodynamics: Work and Heat Transfer", G. Rogers and Y.Mayhew, Longman Scientific

	 "Fundamentals of Engineering Thermodynamics", M.J. Moran & H.N. Shapiro, John Wiley & Sons Inc. "Fundamentals of Engineering Thermodynamics", E. Rathakrishnan, Prentice-Hall of India
AEL211	Gas Dynamics
	Basic Concepts: Compressibility; Laws of thermodynamics, perfect gas; Mach number, shock and Mach
	waves; Governing equations for compressible flows.
	Steady One-Dimensional Isentropic Flow: Continuity, momentum and energy conservation equations;
	Stagnationtemperature and pressure; Expression for speed of sound; Normal shock, Rayleigh flow, Fanno
	flow.
	Quasi One-Dimensional Flows: Governing equations; Area-velocity relations; Isentropic flow through
	variable-areaducts, convergent-divergent (or De Laval) nozzles, over-expanded and under-expanded nozzles,
	diffusers.
	Two-Dimensional Flows: Oblique shock wave and its governing equations, θ -B-M relations, attached and
	detached shock; Expansion waves, Prandtl-Meyer flow and its governing equations, Supersonic flow over convex and concavecorners.
	Airfoils in Compressible flow: Critical Mach number and critical pressure coefficient, drag divergence Mach
	number; Shock boundary layer interaction; White comb area rule, supercritical airfoil, swept and delta wings,
	supersonic aerofoils, wave drag; Similarity rules.
	Experiments in Compressible Flow: Transonic, supersonic and hypersonic tunnels and their peculiarities;
	Blowdown, indraft and continuous wind tunnels; Shock tubes; Optical methods of flow visualization.
	TEXT BOOKS:-
	1. "Modern Compressible Flow", John D. Anderson Jr., McGraw Hill
	2. "Gas Dynamics", E. Rathakrishnan, Prentice Hall of India Pvt. Ltd.
	REFERENCE BOOKS:-
	1. "Compressible Fluid Dynamics", P. A. Thomson, McGraw-Hill
	2. "Elements of Gas Dynamics", H. W. Liepmann & A. Roshko, Wiley & sons
	3. "Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion", S. M. Yahya, Wiley Eastern Ltd.
	4. "Compressible Fluid Flow", P. H. Oosthuizen & W.E. Carscallen, McGraw-Hill
AEL213	"Instruments, Measurements and Experiments in Fluids", E. Rathakrishnan
	Elements of Vibrations
	Basics of Vibration: Scope of vibration, important terminology and classification; Vectorial representation
	complex numberrepresentation.
	Undamped Free Vibrations of Single Degree of Freedom System: Derivation of equation of motion for one

	dimensional longitudinal, transverse and torsional undamped vibrations using Newton's second law; D'
	Alembert's principle and principle of conservation of energy; Compound pendulum and centre of percussion.
	Damped Free Vibrations of Single Degree of Freedom System: Viscous damping;Underdamped, critically damped and
	overdamped systems, damping ratio, logarithmic decrement; Vibration characteristics of Coulomb damping and
	Hystereticdamping.
	Forced Vibrations of Single Degree of Freedom System: Forced vibration with constant harmonic excitation,
	steady stateand transient parts, transmissibility; Frequency response curves and phase response curve.
	System with Two Degrees of Freedom: Principle modes of vibration, mode shapes; Undamped free and forced
	vibrations of two degrees of freedom system with harmonic excitation; Vibration absorber.
	Vibrations of Continuous Systems: Introduction to multiple degree of freedom systems; Transverse vibration
	of a string;Longitudinal vibration of a bar; Torsional vibration of a shaft and flexural vibrations of a beam.
	TEXT BOOKS:-
	1. "Mechanical Vibrations", S.S Rao, Pearson Education
	2. "Elements of Vibration Analysis", L. Meirovitch, McGraw-Hill
	REFERENCE BOOKS:-
	1. "Mechanical Vibrations", R. Venkatachalam, Prentice Hall India Learning Private Limited
	2. "Mechanical Vibrations: Theory and Applications", Kelly, S.G., Cengage Learning
	3. "Theory of Vibrations with Applications", W.T. Thomson, M.D. Dahleh& C. Padmanabhan, Pearson
	Education
	 "Principles of Vibration", B.H Tongue, Oxford Publication "Mechanical Vibrations", W.J. Palm III, Wiley
AEL215	Advanced Programming using MATLAB/ Octave
AEL215	Basics of MATLAB computer programming
	 Use of formulae and inbuilt functions
	 MATLAB scripts and functions (m-files)
	 Loops and nested loops
	 Array, vector and matrices
	• Plotting functions and vector plots
	Solving differential equations using MATLAB
	Reading and writing data, file handling
	Using MATLAB toolboxes
	MATLAB graphic functions
	TEXT BOOKS:-
	1. "Getting Started with MATLAB: A Quick Introduction for Scientists & Engineers", R. Pratap, Oxford

	2. "MATLAB for Beginners: A Gentle Approach", P.I. Kattan, P.I. Kattan
	REFERENCE BOOKS:-
	1. "MATLAB For Dummies", J. Sizemore, John Wiley & Sons
	2. "Modeling and Simulation using MATLAB – Simulink", S. Jain, Wiley
	3. "MATLAB Programming for Engineers", S.J. Chapman, Cengage
	4. "Essential MATLAB for Engineers and Scientists", B. Hahn, D.T. Valentine, Academic Press
TPN103	Soft Skill Development -2
	AS PER UD RTU SCHEME of 2021-22
SAA100	SODECA (Anandam)
	AS PER UD RTU SCHEME of 2021-22

B. Tech. Aeronautical Engineering, V Semester

HUL203	Indian Constitution
	AS PER UD RTU SCHEME of 2021-22
AEL301	Aerodynamics
	BasicFluid Mechanics Concepts: Streamfunction; Vorticity, circulation, relation between circulation and vorticity; Kelvin's theorem;
	Helmholtz theorems.
	Potential Flow: Velocity potential; Laplacian flow, principle of superposition; Elementary flows: uniform flow, source, sink, vortex &
	doublet; Potential flow past stationary and rotating circular cylinder, d'Alembert paradox, Magnus effect; Kutta- Joukowski theorem;
	Blasius theorem.
	Flow overAirfoils: Airfoil geometry, angle of attack, sectional forces and moment coefficients, centre of pressure and aerodynamic
	centre;Kutta condition; Introduction to conformal mapping, Kutta-Joukowski transformation; Thin Airfoil Theory, Theodorsen's
	condition;Real flow effects, effect of angle of attack on pressure distribution, airfoil stall, profile drag.
	Flow over Finite Wings: Wing geometry, forces and moment coefficients; Wingtip vortices, downwash, induced drag; Lifting Line
	Theory and its limitations, elliptical and general lift distribution; Simplified horseshoe vortex; Qualitative discussion of flow over delta
	wings.
	Experimental Aerodynamics: Types and components of subsonic wind tunnel, flow quality; Correlation of experimental results to
	actual prototypes; Flow visualization techniques; Instrumentation for pressure, velocity and force measurement.
	TEXT BOOKS:-
	1. "Fundamentals of Aerodynamics", J.D. Anderson, McGraw-Hill Higher Education
	2. "Aerodynamics for Engineering Students", E.L. Houghton, P.W. Carpenter, S. Collicott& D. Valentine, Elsevier REFERENCE BOOKS:-
	1. "Aerodynamics for Engineers", J.J. Bertin&R.M. Cummings, Pearson Education India
	 Actodynamics for Engineers , J.J. BertinæK.W. Cummings, rearson Education India "Theoretical Aerodynamics", E. Rathakrishnan, John Wiley & Sons
	 3. "Basic Aerodynamics: Incompressible Flow", G.A. Randro, H.M. Macmohan&R.L. Roach, Cambridge UniversityPress
	 Low Speed Aerodynamics", K. Ghosh, PHI Learning
	"Flight Vehicle Aerodynamics", M. Drela, MIT Press
AEL302	Aircraft Structures
	Introduction: Features of aircraft structures, monocoque and semi-monocoque structures, idealization, nomenclature &layout,
L	

	functions; Static equilibrium, statically determinate and indeterminate structures; Concept of static stability.
	 Energy Methods: Work and energy principles, strain energy and complementary strain energy; Principal of virtual work, Principal of virtual displacement; Maxwell's Reciprocal theorem; Potential and complementary potential theorems; Castigliano's theorem, unit load method, application of energy principles in analysis of determinate and indeterminate structures. Columns: Euler's column curve, elastic buckling; Use of energy methods; Beam-columns. Failure Theories: Maximum principle stress theory; Maximum principle strain theory; Distortion Theory; Maximum strain energy theory; Octahedral shear stress theory. Induced Stresses: Thermal stresses; Impact loading; Fatigue; Creep; Stress Relaxation.
AEL303	Heat Transfer
	Introduction: Definitions of heat and heat transfer, difference between heat transfer and thermodynamics; Basic modes of heat transfer, engineering applications of heat transfer.
	Conduction: Fourier's law of heat conduction, heat conduction equation for homogeneous isotropic materials in different coordinate systems, significance of thermal diffusivity;Simple one-dimensional steady heat conduction, electrical analogy of heat transfer, critical thickness of insulation; Analysis of fins having variable and constant cross-sectional area, fin efficiency and fin effectiveness; Unsteady heat conduction,lumped systems, Biot number and its physical implication.
	Convection: Natural and forced convection, local and average heat transfer coefficients, Nusselt number, Grashof number; Steady laminar free convection from an isothermal vertical plate; Forced convection over a flat plate, momentum and thermal boundary layer, Prandtl number and its range for various fluids.
	 Thermal Radiation: Radiation characteristics, Planck's law; Stefan-Boltzmann law; Wien's displacement law; Absorptivity, reflectivity and transmissivity, definition of black, gray& diffuse surfaces; Kirchhoff's law; View Factor, reciprocity theorem. Boiling and Condensation: Pool boiling, saturated pool boiling curve, critical heat flux correlation; Dropwise and film
	condensation, laminar film condensation on a vertical plate.
	Heat Exchangers: Parallel flow & counter-flow heat exchangers; LMTD andNTU method, effectiveness of heat exchangers.
	 TEXT BOOKS:- 1. "Heat Transfer", J.P. Holman & S. Bhattacharyya, McGraw Hill Education 2. "Principles of Heat and Mass Transfer", F.P. Incropera, D.P. Dewitt, T.L. Bergman & A.S. Lavine, Wiley India
	 REFERENCE BOOKS:- 1. "Principles of Heat Transfer", F. Kreith, R.M. Manglik& M.S. Bohn, 2. "Heat and Mass Transfer: Fundamentals and Applications", Y.A Cengel& A.J. Ghajar, McGraw-Hill Education 3. "Heat and Mass Transfer", P.K Nag, McGraw Hill Education
	 "Heat Transfer", P.S. Ghoshdastidar, Oxford University Press "Introduction to Heat Transfer", S.K. Som, Prentice Hall India Learning Private Limited
	Page 12 of 48

AEL214	Aircraft Materials and Processes
	Broad Classification of Engineering Materials: Ferrous materials, nonferrous materials and alloys; Steels: Classification and properties
	Maraging steels and super alloys, effects of alloying element on the structure and properties of steel, distribution of alloying elements (Si
	Mn, Ni, Cr, Mo, Co, W, Ti, Al) in steel Ceramic materials; Fiber-reinforced composite materials and polymers.
	Materials in Aircraft Constructions: Requirements of materials for aerospace applications, Wood, aluminum, titanium, copper and magnesium-based alloys, steels, composite materials, plastic, rubber; Adhesives; Surface finishes and paints.
	Corrosion and High Temperature Materials Characterization: Types of corrosion, Effect of corrosion on mechanical properties Corrosion resistance materials, Production and characteristics, Methods and testing, Determination of mechanical and thermal properties of materials at elevated temperatures, Application in thermal protection systems of aircraft.
	Conventional Manufacturing processes: Casting and Moulding, Introduction to bulk and sheet metal forming, Fundamentals of hot and cold working processes, Metal cutting: turning, drilling, milling and finishing processes, Introduction to CNC machining, Rapid prototyping, Joining/fastening processes, Physics of welding, brazing and soldering.
	Unconventional Machining Processes: Abrasive jet machining, Water jet machining, Ultrasonic machining, Electrical discharg machining, Electro chemical machining, Laser beam machining, Plasma arc machining and Electron beam machining.
	OE-1
	AS PER UD RTU SCHEME of 2021-22
XXN201	Seminar 1 (Non-Graded)
XXN301	AS PER UD RTU SCHEME of 2021-22
	Industrial Training (45 days)
	AS PER UD RTU SCHEME of 2021-22
	SODECA (Anandam)
	AS PER UD RTU SCHEME of 2021-22

B. Tech. Aeronautical Engineering, VI Semester

AEL301	Aerospace Propulsion
	Fundamentals of Air-Breathing Engines: Review of thermodynamic principles, basic principles of propulsion; History of air-
	breathing engines; Different types of air-breathing engines, functions of different engine components; Engine-aircraftmatching;
	Methods of thrust augmentation.
	Performance of Air-Breathing Engines: Ideal cycles for turbojet, turboprop, turbofan, turbo shaft and ramjet engines; idealcycle
	analysis; Non-ideal cycle analysis, stage and component efficiencies; Thrust equation; Performance parameters of jet engines.
	Inlets: Internal flow and stall in subsonic inlets, boundary layer separation; Major features of external flow near a subsonic inlet;
	Diffuser performance; Supersonic inlets, starting problem in supersonic inlets, shock swallowing by variable area inletor by
	overspeeding aircraft.
	Centrifugal Compressor: Operating principle, conservation of angular momentum, applications, advantages and disadvantages; Stage dynamics, velocity diagrams, cascade efficiency, performance characteristics; Stall and surge.
	Axial Flow Compressor: Euler's turbo-machinery equations, velocity diagram analysis, cascade action; Multi-staging; Degree of
	reaction; Radial equilibrium; Flow problems, compressor efficiency.
	Axial Flow Turbine: Types of turbines, performance parameters; Blade design principles; Axial turbine stage, stageefficiency;
	Turbine Performance; Blade stresses, blade cooling; Turbine and compressor matching.
	Nozzles: Flow in isentropic nozzles, nozzle choking; Nozzle efficiency, losses in nozzles; Overexpanded and
	underexpandednozzles; Ejector and variable area nozzles; Thrust reversal.
	TEXT BOOKS:-
	1. "Gas Turbine Theory", H.I.H. Saravanamuttoo, G.F.C. Rogers, H. Cohen & P.V. Straznicky, Prentice Hall
	2. "Mechanics and Thermodynamics of Propulsion", P. Hill & C. Peterson, Pearson Education
	REFERENCE BOOKS:-
	 "Aircraft Propulsion", Saeed Farokhi, Wiley-Blackwell "Elements of Gas Turbine Propulsion", J.D. Mattingly, McGraw Hill Education"Aircraft
	Propulsion and Gas Turbine Engines", A.F. El-Sayed, CRC Press
	3. "Fundamentals of Jet Propulsion with Applications", R.D. Flack, Cambridge University Press"Gas Turbines", V. Ganesan,
	McGraw Hill Education
	4. Gas Turbine Propulsion", D.P. Mishra, Viva Books.
	Aircraft stability and control
	Flight Environment, Flight Forces and Steady Flight Performance: The atmosphere as flight environment. The International Standard
	Atmosphere Model. The Force and Moment Systems of an Aircraft. Steady state performance.
	Static Longitudinal Stability and Control (Stick Fixed): Degree of freedom of rigid bodies in space. Static Longitudinal stability - Stick

fixed. Effects of fuselage and nacelle - Influence of CG location - Power effects - Stick fixed neutral point.

Static Longitudinal Stability and Control-Stick free: Introduction, Hinge moment parameters, Control surface floating characteristics and aerodynamic balance, Estimation of hinge moment parameters, The trim tabs, Stick-free Neutral point, Stick force gradient in unaccelerated flight, Restriction on aft C.G.

Static Directional and Lateral Stability and Control Static directional stability rudder fixed, Contribution of airframe components, Directional control. Rudder power, Stick-free directional stability, Requirements for directional control, Rudder lock, Dorsal fin. One engine inoperative condition. Weather cocking effect. Static lateral stability. Estimation of dihedral effect. Effect of wing sweep, flaps, and power. Lateral control, Estimation of lateral control power, Aileron control forces, Balancing the aileron. Coupling between rolling and yawing moments. Adverse yaw effects. Aileron reversal.

Equations of Motions (EOMs) Derivation of rigid body equations of motion, Orientation and position of the airplane, gravitational and thrust forces, Small disturbance theory. Aerodynamic force and moment representation, Derivatives due to change in forward speed, Derivatives due to the pitching velocity, Derivatives due to the time rate of change of angle of attack, Derivatives due to rolling rate, Derivatives due to yawing rate.

Dynamic Stability Dynamic longitudinal stability. Types of modes of motion: phugoid motion, short period motion. Routh's stability criteria. Factors affecting period and damping of oscillations. Dynamic lateral and directional stability. Response to aileron step-function, side-slip excursion. Dutch roll and Spiral instability. Auto- rotation and spin. Stability derivatives for lateral and directional dynamics. **Textbook/s**

1. Airplane Performance stability and Control Perkins, C.D., and Hage, R.E John Wiley Son Inc, New York 1988

2. Flight Stability and Automatic Control Nelson, R.C McGraw-Hill Book Co 2007

Reference Books

1. Performance, Stability, Dynamics and Control of Airplanes Bandu N. Pamadi AIAA 2nd Edition Series, 2004

2. Introduction to flight John D. Anderson, Jr McGraw-Hill 2000

3. The Principles of the Control and Stability of Aircraft W.J. Duncan Cambridge University Press 2016

4. Dynamics of Flight Stability and Control Etkin, B John Wiley, New York 1982

5. Miele, A., Flight Mechanics Theory of Flight Paths, Vol.1, AddisonWesley, Reading, MA.

6. Tewari, A., Atmospheric and Space Flight Dynamics, Birkhauser, Boston, 20064.

7. Mechanics of Flight: Warren F. Phillips. John Wiley and Sons, Inc

Computational Fluid Dynamics

Introduction: Importance, concept and applications of CFD; Different types of partial differential equations —hyperbolic, parabolic, elliptic and mixed types.

Governing equations: Continuity, momentum and energy equations in conservative and non-conservative forms; Governingequations in boundary layers and inviscid flows; Initial and boundary conditions.

Discretization: discretization of differential equations; discretization techniques — finite difference, finite element and finite volume methods and their comparison; Fundamentals of FDM, forward, backward andcentral difference, applications to simple problems

	such as transient one-dimensional and two-dimensional conduction; Stability criterion, errors, consistency, optimum step size. Grid generation: Types of grid; Structured, unstructured and hybrid; Coordinate transformation; Elliptic grid generation; Grid independence test; Adaptive grids, modern developments in grid generation. Calculation of flow field: Methods of solution, simple one dimensional computations using different methods; Convergence criterion; Implicit and explicit algorithms; Pressure and velocity corrections; Vorticity-stream function method; Solution of turbulentflows and turbulence modelling. TEXT BOOKS:- 1. "Computational Fluid Dynamics – The Basics with Applications", J. D. Anderson Jr., McGraw-Hill 2. "Computational Fluid Flow and Heat Transfer", K. Muralidhar& T. Sundarajan, Narosa Publishing House REFERENCE BOOKS:- 1. "Numerical Computation of Internal and External Flows", C. Hirsch, Butterworth-Heinemann 2. "Fundamentals of Engineering Numerical Analysis", P. Moin, Cambridge University Press 3. "Numerical Methods for Engineering Application", J. H. Ferziger, Wiley 4. "Computational Fluid Dynamics", T.J. Chung, Cambridge University Press.
AEL304	Aircraft Systems
	Airplane Control Systems: Conventional Systems; Push pull rod system and its components; Types of flight control systems; Modern
	control systems, Digital fly by wire systems; Auto pilot system Technology; Introduction to Communication and Navigation systems;
	Instrument landing Systems, VHF Omnidirectional range.
	Hydraulic Systems: Components; Hydraulic system working, modes of operation; Pneumatic systems, components, working principles & advantages.
	Landing Gear Systems: Classification, indications, shock absorbers, landing gear extension and retraction mechanism; Anti-skid system, wheels and brake, steering systems.
	Fuel Systems: Types of fuels, their properties and testing, colour codes, Pumps, Types of fuel systems, indications and warnings; Inflight refuelling; Aircraft fuel jettison system.
	Miscellaneous Systems: Components and operation of air-conditioning system; Pressurization system; Oxygen systems; Fire protection systems; De-icing and anti-icing systems; Seat safety system: Ejection system.
	General Maintenance Practices: Jacking, levelling and mooring, refueling and defueling of aircraft, safety precautions; Hydraulic and
	fluid systems precautions against contamination; Identification colour coding, symbols and other markings to identify the fluid systems.
	 TEXT BOOKS:- 1. "Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration", I. Moir & A. Seabridge, Wiley-Blackwell 2. "Aircraft Systems", D.A. Lombardo, McGraw Hill REFERENCE BOOKS:-

1. "Aircraft Instruments", E.H.J. Pallett, Pearson Education
2. "Aircraft Instrumentation and Systems", S. Nagabhushana, I.K. International Private Limited
3. "Aircraft Structures and Systems", Ray Wilkinson, Mechaero Publishing
4. "Aircraft Display Systems", M. Jukes, AIAA
5. "Aircraft Electrical Systems, Hydraulic Systems and Instruments", R.H. Drake, Sportsman's Vintage Press
DE-1
AS PER UD RTU SCHEME of 2021-22
OE-2
AS PER UD RTU SCHEME of 2021-22

XXN201	Seminar 2 (Non Graded)
	AS PER UD RTU SCHEME of 2021-22
SAA100	SODECA (Anandam)
	AS PER UD RTU SCHEME of 2021-22

B. Tech. Aeronautical Engineering, VII Semester

Aircraft Design	
Aircraft Design Fundamentals: Introduction to design, engineering design, feasibility analysis, review, evaluation, and feedback	
Conceptual system design, preliminary system design, detail system design; Aircraft design requirements and specifications	ί,
airworthiness, aerodynamic and structural design considerations; UAV design.	
Aircraft Conceptual Design: Aircraft configuration alternatives, aircraft classification and design constraints; Configuration selection	n
process and trade-off analysis; Material selection; Conceptual design optimization.	
Preliminary Design: Maximum Take-Off Weight Estimation; Estimation of cruise and manoeuvring loads; Load factor, v-n diagram	•
Wing loading, wing area; Engine sizing.	
Wing Design: Factors influencing selection of airfoil and planform; Spanwise load distribution, Stalling, take-off and landin	
considerations; Bending moment and shear force; Selection of wing vertical location, airfoil section, wing incidence, aspect ratio, tape	r
ratio, sweep angle, twist angle, dihedral angle, high-lift device; Estimation of wing drag.	
Tail Design: Aircraft trim requirements; Tail configuration, canard or aft tail; Optimum tail arm; horizontal tail parameters; Vertical tail design.	
Fuselage Design: Fuselage configuration design and internal arrangement; Cockpit design; Passenger cabin design; Carg	0
section design; Other fuselage internal segments; Optimum length-to-diameter ratio; Lofting.	J
Propulsion System Design: Functional analysis and design requirements; Selection of type of engine, number of engines,	e
location; Engine installation; Propeller sizing; Engine performance.	0
Landing Gear Design: Functional analysis and design requirements; Selection of landing gear configuration, possible retraction	n
mechanism into fuselage or wing; Landing Gear position according to aircraft centre of gravity; Absorption of landing loads.	
Design of Control Surfaces: Aileron Design, Elevator Design, Rudder Design.	
Weight Calculation: Estimation of weight of major components, Aircraft weight distribution; Aircraft centre of gravity calculation	1,
centre of gravity range; Aircraft mass moment of inertia.	
Advanced Design Concepts: Supersonic aircraft design; Very large aircraft; Morphing aircraft; Supercritical wing; Flying wing	,,
tailless, lifting fuselage, and blended wing-body designs; Special considerations such as stealth, maintainability etc.	
Complete Design Problem: Design of airframe for given specifications with constraints; Prediction of performance, stability an	
control, noise and emission levels; Reviewing selection of engines from all considerations; Freezing the design; Preparation of	t
preliminary drawings including 3 views and layout.	
TEXT BOOKS:-	
 "Aircraft Design: A Conceptual Approach", D.P. Raymer, AIAA Education Series "Aircraft Design: A Systems Engineering Approach", M. H. Sadraey, Wiley-Blackwell 	
REFERENCE BOOKS:-	
1. "Aircraft Design", A.K. Kundu, Cambridge University Press	
 Alterat Design', A.K. Ruhud, Cambridge University Hess "Introduction to Aircraft Design", J.P. Fielding, Cambridge India 	
2. Introduction to Emiorat Design , METERoland, Camorago India	

 "General Aviation Aircraft Design: Applied Methods and Procedures", S. Gudmundsson, Butterworth-Heinemann "Design of Aircraft", T.C. Corke, Pearson
Space Dynamics
Introduction: Definition of space, space environment, effect of space environment on materials of spacecraft structure; Solarsystem, celestial sphere, ecliptic, equatorial plane and equinoxes; History of space exploration, different types of earth orbits, types of spacecraft, spacecraft subsystems; Newton's law of gravitation, Kepler's laws; Vector differentiation, kinematics relative to rotating frames.
Two-body Problem: Equation of relative motion, conservation of angular momentum and energy; Different types oftrajectories, orbital elements; Lambert's theorem.
N-body Problem: Equation of motion; Restricted three-body problem, Lagrangian points, concept of sphere of influence. Orbital Manoeuvres: Hohmann transfer, bielliptic transfer, plane change manoeuvres, combined manoeuvres, low thrusttransfer manoeuvres, Non-coplanar transfer; Rendezvous missions, interplanetary trajectories, gravity assist trajectories; Orbitperturbations.
 Rocket Vehicle Dynamics: Basic functions and features of rockets and missiles; Tsiolkovsky rocket equation; Launch vehicle ascent trajectories and its different phases, effect of aerodynamic drag and gravity on ascent mission performance, vertical, inclined and gravity turn trajectories; Static and dynamic stability of rockets, rocket thrust vector control methods; Concept of multi-staging, series and parallel staging configurations, optimal staging solutions; Re-entry vehiclesand missions, aerobraking. Attitude Dynamics and Control: Euler's equations for rotational dynamics; Torque-free motion of asymmetric andaxisymmetric rigid bodies; Spinning and non-spinning spacecraft, dual spin spacecraft, effect of energy dissipation on stability of rotational motion; Overview of actuation mechanisms for attitude control, gyroscopic motion, stabilization through gravity gradient, attitude sensors, design of control of three-axis stabilized spacecraft in orbit using reaction wheels, thrusters, magnets, single and double gimbaled control moment gyros, Yo-Yo mechanism. TEXT BOOKS:-
 "Orbital Mechanics for Engineering Students", H.D. Curtis, Butterworth-Heinemann "Elements of Space Technology", R.D. Meyer, Academic Press REFERENCE BOOKS:-
 Construct BOOKS 1. "Orbital Mechanics", V.A. Chobotov, AIAA Education Series 2. "Fundamentals of Astrodynamics", R.R. Bate, D.D. Mueller & J.E. White, Dover Books 3. "Spaceflight Dynamics", W.E. Wiesel, Aphelion Press 4. "Fundamentals of Astrodynamics and Applications", D.A. Vallado, J. Wertz, Microcosm Press 5. "Rocket and Spacecraft Propulsion", M.J.L. Turner, Springer
Aeromodels Design and Fabrication Lab.
 Design and fabrication of fixed-wing gliders Comparison of properties of thermocole, balsa wood, Styrofoam, composites for aeromodel fabrication Detailed design of fixed-wing powered aeromodels
Design, fabrication and testing of different components Aerodynamic and structural design

	• Use of flight simulator
	Concepts used in unconventional UAVs such as rotary wing models and ornithopters
	OE-3
	AS PER UD RTU SCHEME of 2021-22
	DE-2
	AS PER UD RTU SCHEME of 2021-22
	Project Part- I
	• The students are required to work in groups of not more than three students on a project related to AerospaceEngineering under the guidance of a faculty member in one of the labs in the college.
	• The project topic should be such that it enables them to bring into practice the theoretical concepts learnt as wellaslearn new concepts and has to be approved by Project Coordinator.
	• The students are required to meet their project guides at least once in a fortnight and maintain a record of the same n a project diary.
	• A feasible working strategy should be developed and presented within a month.
	 At least two mid-semester presentations should be organized by Project Coordinator to review the progress during the semester. A technical report and presentation has to be submitted at the end of the semester for evaluation of the work. TheProject Coordinator should preferably be one of the members of the external grading committee.
XXN302	Industrial Training (60 days)
	• As per the curriculum, all the students should undertake a summer training or internship in an industry oracademic institute, that allows them to learn new skills increasing their employability.
	After returning to the college, each student has to prepare a report and presentation to showcase the work done during the training period, as per the guidelines provided by the training coordinator.
	• Regular presentations will be organised in the class where students will present their learning during the training.
	• Before the end of the semester, every student has to complete and submit the report and presentation, based onwhich the grading will be done.
SAA100	SODECA (Anandam)
	AS PER UD RTU SCHEME of 2021-22

B. Tech. Aeronautical Engineering, VIII Semester

HUL204	Innovation & Entrepreneurship
	AS PER UD RTU SCHEME of 2021-22
	DE-3
	AS PER UD RTU SCHEME of 2021-22
MEL414	DE-4
	AS PER UD RTU SCHEME of 2021-22
	DE-5
	AS PER UD RTU SCHEME of 2021-22
	Project Part- 2
	• The primary objective of this course is to develop in students the professional quality of synthesis employing technicalknowledge obtained in the field of engineering & technology through a project work involving design and analysisaugmented with creativity, innovation and ingenuity.
	• The students should form groups of two to four students for the project work.
	 Each group should work under the guidance of a faculty member who will serve as the project mentor. A feasibleand interesting project objective related to aerospace engineering should be chosen taking approval from Project Coordinator. Each group should meet with its project mentor regularly and maintain the record of discussion in a project diary.
	• The Project Coordinator should call regular meetings of all groups to monitor their regular progress in their projects, and give constructive suggestions as required.
	• For internal grading, the Project Coordinator would assign 40% marks based on regular assessment throughout the semester during project review meetings, and the project mentor would give 60 % marks to each student based on his perception of sincerity of the student.
	• Each group has to prepare a technical report according to the guidelines provided by Project Coordinator. The reportshould contain introduction to the topic, technical background, objective, working methodology, detailed calculations, data analysis, results, discussion and the final conclusion of project.
	• The external evaluation would be done by external examiners appointed by HoD based on the final presentation, project demonstration and the technical report. 40% marks may be allocated to the report, 30% marks to the presentation and30% marks to the successful demonstration and realization of desired objectives.
SAA100	SODECA (Anandam)
	AS PER UD RTU SCHEME of 2021-22

Open Electives: 1, 2

Mechanics of Composites
Fundamentals of Composite materials: Definition, matrix & fibres, various types of matrix materials and their properties, properties
of various type of fibres like glass, Kevlar, carbon and graphite; Polymers, properties of polymers like epoxy, polyester and phenolic;
Applications of composites with emphasis on aerospace industry.
Manufacturing of Composites: Hand lay-up technique; Autoclave moulding; Pressure bag and vacuum bag moulding; Pultrusion;
Resin-transfer moulding; Injection moulding; Bulk and sheet moulding compound methods; Prepregs.
Elastic Behaviour of Composite Lamina-Micromechanics: Volume fraction, weight fraction, density of composites;
Micromechanics and Macromechanics approach; Longitudinal elastic properties, transverse elastic properties, in-plane shearmodulus,
Poisson's ratio, Halpin-Tsai equations.
Elastic behaviour of Composite Lamina-Macromechanics: Stress-Strain relations, general anisotropic materials, orthotropic
material, transversely isotropic material, isotropic material; Stress-strain relations for a thin lamina.
Analysis of multidirectional Laminates: Laminate orientation code, symmetric and balanced laminate; Introduction to cross-ply,
angle-ply and quasi isotropic laminates; Classical laminate theory, strain-displacement relationship, stress-strainrelations, force and
moment resultants, in-plane and flexural laminate stiffness; Asymmetric laminate and coupling effect; Stress analysis of cross-ply
symmetric laminate under in-plane and flexural loading.
Special Types of Composites: Short fibre composites; Sandwich structure composites; Honeycomb structure.
Mechanical Testing of Composites: Tensile testing; Compressive testing; Intra-laminar shear testing; Fracture testing; Impact
testing; Fatigue testing.
Failure and Maintenance of Composites: Failure types in laminates; Damage to laminate structures; Inspectionmethodology, quality
control.
TEXT BOOKS:-
1. "Analysis and Performance of Fiber Composites", B.D. Agarwal & L.J. Broutman, John Wiley & Sons
2. "Engineering Mechanics of Composite Materials", I.M. Daniel &O.Ishaai, Oxford University Press REFERENCE BOOKS:-
1. "Mechanics and Analysis of Composite Materials", V.V. Vasiliev& E.V. Morozov, Elsevier Science Ltd.
2. "Mechanics of Composite Materials", R.M. Jones, Technomic Publication
3. "Composite Material: Science and Engineering", Krishnan K. Chawle. Springer
4. "Mechanics of Composite Materials", Autar K. Kaw, Taylor and Francis
 5. "Composite Material: Science and Engineering", K.K. Chawla, Springer-Verlag New York Inc
Introduction to Aeroelasticity

Aeroelasticity: Elements of aero elasticity. General nature of aero elastic problems. Divergence of a Lifting Surface. ControlSurface
Reversal.
Nature of static aeroelastic phenomenon: Wing divergence and control system reversal for an idealized two-dimensional wing and approximate solution for a finite wing.
Dynamic Aeroelasticity: Energy Method. Sinusoidal Excitation. Periodic Force. Arbitrary Force. Equations of Motion of aTwo DOF
Model of an Aircraft Wing. Quasi-Steady Aerodynamic Theory. Dynamics of Airfoil. Random Motion.
Flutter phenomena and flutter analysis: Flutter of a Cantilever Wing. Difference between flutter instability and resonance. Simplified
expressions for aerodynamic forces and moments for an oscillating airfoil. Determination of flutter speed and frequency for an
idealized two dimensional wing as well as for a finite wing. Methods of flutter control and prevention.
Elementary theory of buffeting.
TEXT BOOKS:-
1. S Timoshenko, Vibration Problems in Engineering, Van Nostrand. 1982.
2. W T Thomson, Vibration Theory and Application, Allen and Unwin.
REFERENCE BOOKS:
1. Y C Fung, Introduction to the Theory of Aeroelasticity
 R L Bisplinghoft, H Ashley and R. L. Halfman, Aero elasticity, Addison Wesley. Unmanned Aerial Systems
Introduction: History, Classification and applications of UAVs, Unmanned Aircraft System (UAS), UAS composition, societal
impact, future prospects, Regulations and safety considerations
Characteristics of UAV types: Long-range, long-endurance, MUAV types, MAV and NAV types, UCAV, Novel hybridaircraft
configurations
UAV Propulsion: Internal combustion engines, turbine engines, electrical systems
Aerodynamics: Low Reynolds number effects, Lift-induced drag, parasite drag, rotary wing aerodynamics, response to airturbulence,
dynamic stall
Control and stability: Flight control, HTOL aircraft, helicopters, convertible rotor aircraft, Autopilot Systems & Groundcontrol Station,
Sensors used in UAVs, on-board flight control
Introduction to design and selection of UAV: Conceptual design, preliminary design, detailed design, selection of UAV for
particular requirement
Aspects of airframe design: Airframe configuration, Scale effects, packaging density, Aerodynamic design, Strength
stiffness and reliability requirements, flight and gust envelopes including manoeuvre loads, selection of power plants; Designfor stealth
Payload types: Non-dispensable and dispensable payloads, sensing / surveillance, weaponized, delivery
Communications: Communication media, radio communication, mid-air collision avoidance system, communicationdata range
and bandwidth usage, antenna types, telemetry
Navigation: NAVSTAR-GPS, TACAN, LORAN-C, inertial navigation, radio tracking

	Control stations: Control station composition, open system architecture, mini-UAV 'Laptop' ground control station, close-range
	UAV systems, medium and long range UAV systems, sea control stations, air control station
	TEXTBOOKS:-
	1. "Unmanned Aircraft Systems: UAVS Design, Development and Deployment", Reg Austin, Wiley
	2. "Introduction to Unmanned Aircraft Systems", D.M. Marshall, R.K. Barnhart, E. Shappee & M.T. Most, CRC Press
	REFERENCE BOOKS:-
	1. "Small Unmanned Aircraft: Theory and Practice", R.W. Beard &T.W. McLain, Princeton University Press
	2. "Unmanned Aircraft Systems", E. Atkins, A. Ollero& A. Tsourdos, John Wiley & Sons
	3. "Introduction to UAV Systems", P. Fahlstrom& T. Gleason, Wiley
	4. "Theory, Design, and Applications of Unmanned Aerial Vehicles", A.R. Jha, CRC Press
	5. "Unmanned Aviation Systems: The Definitive Guide", M. Leasure & M.S. Nolan, eAcademicBooks LLC
	Fuels & Propellant Technology
	Properties and tests for petroleum products: Motor gasoline, Aviation gasoline, Aviation turbine fuels, Requirements of aviation
	turbine fuels of Kerosene type and high flash point type, Requirements for fuel oils Single base propellants, Doublebase propellants,
	composite propellants, CMDB propellants, Metalized composite Propellants, Brief introduction to combustion theory of composite
	and double base propellants.
	Various liquid propellants and their properties: Monopropellant and bipropellant systems, Concept of ullage, Ignition studies of liquid
	propellants, Propellant loading tolerances, Inventory-Volume versus mass loading, Loading measurementand control, Outage control.
	Introduction to cryogenic propellants: Liquid Hydrogen, liquid Oxygen, Liquid nitrogen and liquid helium, Theory behind the
	production of low temperature, Expansion Engine, Cascade process, Joule Thompson Effect, Magnetic effect, Ortho and Para H2,
	Hilium4 and Helium3, Ideal cycles and Efficiency of cryo systems, Storing of cryogenic propellants, Cryogenic loading problems.
	Laboratory testing: Arc Image Furnace, Ignitability studies, Differential Thermal Analysis, Thermo gravimetric analysis, Particle
	size measurement Micro-merograph, Strand burner tests Impulse Bomb, Performance estimation.
	TEXT BOOKS:-
	1. "Rocket Propulsion Elements", Sutton, G.P., John Wiley.
	REFERENCE BOOKS:-
	1. "Fuels and Combustion", Sharma, S.P. and Mohan.C., McGraw Hill Publishing.
	2. "Gas Turbines and Jet and Rocket Propulsion", Mathur, M., and Sharma.R.P., Standard Publishers." Electrical Vehicle Technology",
	James Laraminie, Wiley.
	Finite Element Methods
	Introduction: FEM and its applicability, Review of Matrix algebra, Gauss elimination method, Uniqueness of solution, Banded
	symmetric matrix and bandwidth.
	Structure analysis: Two-force member element, Local stiffness matrix, coordinate transformation, Assembly, Global stiffness matrix,
	imposition of Boundary conditions, Properties of stiffness matrix
L	

One-dimensional Finite Element Analysis: Basics of structural mechanics, stress and strain tensor, constitutive relation, Principle of
minimum Potential, General steps of FEM, Finite element model concept / Discretization, Derivation of finiteelements, equations using
potential energy approach for linear and quadratic 1-D bar element, Shape functions and their properties, Assembly, Boundary
conditions, Computation of stress and strain; solution of problems from fluid mechanics and heat transfer.
Two Dimensional Finite Element Analysis: Finite element formulation using three-node triangular (CST) element , Plane stress and
Plain strain problems, Shape functions, Isoparametric formulation with examples, Numerical integration using gauss quadrature formula;
Application to thermal problems.
Finite Element Formulation from Governing Differential Equations: Method of Weighted Residuals and Galerkin's method. Application to one-dimensional problems, introduction to variational formulation (Ritz Method.)
Higher Order Elements: Lagrange's interpolation formula for one and two independent variable, Convergence of solution, compatibility, element continuity, static condensation, p and h methods of mesh refinement, Aspect ratio and
element shape, Introduction to concept of element mass matrix in dynamic analysis.
TEXT BOOKS:-
1. "Text Book of Finite Element Analysis", P. Seshu, Prentice Hall IndiaREFERENCE BOOKS:-
1. "An Introduction to the Finite Element Method", J.N. Reddy, McGraw-Hill
2. "Finite Element Procedure in Engineering Analysis", K.J. Bathe, Prentice Hall India
3. "Introduction to Finite Elements in Engineering", T.R. Chandrupatla & A.D. Belegundu, Prentice Hall of India
4. "Applied Finite Element Analysis", L.J. Segerlind, John Wiley & Sons
5. "Concepts and Applications of Finite Element Analysis", R.D. Cook, D.S. Malcus, M.E. Plesha & R.J. Witt, JohnWiley & Sons

Aircraft Materials Engineering	
Atomic Structure of Metals: Bonding in solids, crystal structure, mechanical properties; Crystal lattice of BCC, FCC and HCP,	
crystallographic notation of atomic planes and directions (Miller Indices); Polymorphism and allotropy; Imperfections incrystals.	
Theories of Plastic Deformation: Phenomenon of slip, twinning, recovery, recrystallization and grain growth; Iron-carbon equilibrium	
diagram, phase transformation in the iron carbon diagram, TTT curves.	
Heat Treatment Processes of Engineering Materials: Principles and applications of annealing, normalizing, hardening, and	
tempering; Chemical heat treatment of steels: carburizing, nitriding, cyaniding, carbo-nitriding of steel.	

Broad Classification of Engineering Materials: Ferrous materials, nonferrous materials and alloys; Classification of steels; Maraging
steels and super alloys, effects of alloying element on the structure and properties of steel, distribution of alloying elements (Si, Mn, Ni, Cr,
Mo, Co, W, Ti, Al) in steel Ceramic materials; Fibre-reinforced composite materials and polymers.
Materials in Aircraft Constructions: Wood, aluminium, titanium, copperand magnesiumbased alloys, steels, compositematerials,
plastic, rubber; Adhesives; Surface finishes and paints.
Corrosion : Detection and prevention; Protective coatings.
Testing: Destructive and non-destructive testing techniques; Crack detection; Inspection of parts by hot oil and chalk, dye-penetrant,
fluorescent and magnetic particles, X-ray, ultrasonic, eddy current and acoustic emission methods.
TEXT BOOKS:-
1. "Aircraft Materials and Processes", George F. Titterton, Himalayan Books
2. "Materials Science and Engineering", William D. Callister Jr., David G. Rethwisch, John Wiley & Sons
REFERENCE BOOKS:-
1. "Aircraft Materials and Analysis", Tariq Siddiqui, McGraw-Hill
2. "Aircraft Materials and Processes", Dorothy Kent, Shroff Publication
3. "Materials Science and Engineering: A First Course", V. Raghavan, PHI Learning Private Limited
4. "Material Science and Engineering", W.F. Smith, J. Hashemi & R. Prakash, McGraw Hill Education
5. "Materials for Engineering", W. Bolton, Newnes
Automatic Control Systems
Introduction: Open loop and closed loop control systems, series and parallel system; Feedback characteristics of control systems;
Mathematical models of physical systems; Control systems and components.
Feedback Control System: Transfer function of linear systems; Impulse response of linear Systems; Block diagrams
offeedback control systems, reduction of block diagrams, signal flow graphs, output to input ratios; Time response analysis, effects
of derivative and integral control; Steady state response of feedback control system Frequency response;
Correlation between frequency domain and time domain specifications; Bode plot analysis.
System Stability: Concept of stability and algebraic criteria; Routh-Hurwitz criterion; Root locus technique; Nyquist
stabilitycriterion.
State Variable Analysis and Design: Introduction to state variables; Compensator design; Controller design.
Longitudinal Autopilot: Brief description through block diagrams and root locus of displacement; Pitch orientationcontrol system,
acceleration control system; Fly-by-wire control system; Instrument Landing System.
TEXT BOOKS:-
1. "Modern Control Engineering", K. Ogata, PHI learning
2. "Automatic Control Systems", B,C. Kuo & F. Golnaraghi, Wiley
REFERENCE BOOKS:-
1. "Aircraft Flight Dynamics and Control", W. Durham, Wiley-Blackwell
2. "Control System Design: An Introduction to State-Space Methods", B. Friedland, Dover Publications Inc.
3. "Automatic Control of Aircraft and Missiles", J.H. Blackelock, John Wiley & Sons
4 "Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems", B.L. Stevens, F.L.Lewis & E.N.

Johnson, John Wiley & Sons	
"Advanced Control of Aircraft, Spacecraft and Rockets", Ashish Tewari, Wiley-Blackwell	
Structural Health Monitoring	
 Introduction to Structural Health Monitoring: Motivation and applications of SHM, SHM as a way of making materials and	
structures smart, Basic components& working mechanism of SHM, SHM as a part of system management, Passive and active SHM,	
NDE, Integrated Vehicle Health Monitoring (IVHM)	
Maintenance and Repair Strategies: Facts and importance of Maintenance, Various aspects of Inspection, Assessment procedure for evaluating a damaged structure, Rapid visual screening. Implementation of SHM in aerospace applications.	
Vibration-Based Techniques: Basic concepts, Local and global methods, Damage diagnosis as an inverse problem, Model-based damage assessment, Damage Diagnostic methods based on vibrational response.	
Neural network approach: Basic idea of neural networks, Neural networks in damage detection, localization and quantification, Multi- layer Perceptron (MLP).	
Smart Materials in Aerospace Structures: Piezoelectric sensors, Electromechanical impedance for defect detection, piezoelectric implant method. Energy Harvesting using Piezoelectric Materials in Aerospace Structures Electrostrictive materials, Magnetostrictive materials, Shape Memory Alloys, Optical Fiber.	
Case Studies: Case studies for SHM technologies for damage detection, diagnosis and prognosis in Aerospace StructuresVarious case studies with innovative technologies of SHM in aerospace applications including sandwich composite structures, civil infrastructures, pipelines, rotating machinery. TEXT BOOK:-	
1. Fuh-Gwo Yuan, Structural Health Monitoring (SHM) in Aerospace Structures, Woodhead Publishing, 1 st Edition 2016. REFERENCE BOOKS:-	
1. Jayantha Ananda Epaarachchi and Gayan Chanaka Kahandawa, Structural Health Monitoring Technologies and Next-Generation Smart Composite Structures (Composite Materials), CRC Press; 1 st Edition (December 2019)	
 Wiley and Staszewski, Health Monitoring Of Aerospace Structures: Smart Sensor Technologies And SignalProcessing, WILEY INDIA; 1st Edition (January 2017). 	
3. Daniel Balageas, Claus-Peter Fritzen, Alfredo Güemes, Structural Health Monitoring, WileyISTE, 2006.	
Douglas E Adams, Health Monitoring of Structural Materials and Components-Methods with Applications, John Wileyand Sons, 2007. Structural Health Monitoring: Current Status and Perspectives, Fu Ko Chang	
Non-destructive testing	
Introduction to NDT: Fundamentals of non-destructive testing and evaluation, physical characteristics of materials and their applications in NDT, advantages and limitations of NDT; Visual inspection techniques.	
Liquid Penetrant Testing: Basic principle; types and properties of liquid penetrants, methods of application; Developerapplication	
and inspection, interpretation of results.	
Magnetic Particle Testing: Basic theory of magnetism; Magnetization methods; Field indicators, particle application, inspection.	
Eddy Current Testing: Basic principle, Faraday's law, inductance, Lenz's law, self and mutual inductance, impedanceplane;	
Generation of eddy currents, properties of eddy currents, eddy current sensing elements, inspection system and probes,	

eddy current instrumentation; System calibration; Applications and limitations.
Ultrasonic Testing: Basics of ultrasonic waves; Ultrasonic equipment; Test method, variables affecting an ultrasound test; Distance and
Area calibration; Weld inspection by UT.
Radiography: X-rays and their properties; X-ray generation, absorption and atomic scattering; Image formation, image quality; Digital Radiography, neutron radiography; Image interpretation; Radiation Shielding; Radiography applications, limitations and safety.
Special Techniques: Acoustic Emission testing; Holography; Thermography; Magnetic Resonance Imaging; In-situ
metallography.
Industrial Applications of NDT: Span of NDT activities in railways, nuclear and chemical industries, aircraft and aerospace industries,
automotive industries, offshore gas and petroleum projects, coal mining industry; NDT of pressure vessels, castings, welded
constructions.
TEXT BOOKS:-
1. "Non-Destructive Testing", Louis Cartz, ASM International
2 "Non-Destructive Test and Evaluation of Materials", J. Prasad & C.G.K. Nair, McGraw Hill Education
REFERENCE BOOKS:-
1. "Non-Destructive Testing Techniques", Ravi Prakash, New Age International Publishers
2. "Introduction to Non-Destructive Testing: A Training Guide", P.E. Mix, Wiley
3. "Aeronautical Applications of Non-Destructive Testing", Abbas Fahr, DEStech Publications
4. "Practical Non-Destructive Testing", B. Raj, T. Jayakumar & M. Thavasimuthu, Narosa Publishing House
 5. "Non-Destructive Testing", B. Hull & V. John, Springer-Verlag New York Inc. Rockets and Missiles
Introduction: History of rockets and missiles; Classification of missiles; Concept of guidance, peaceful application of guidance; Selection
of materials for missiles.
Major Components of Missiles: Airframe, flight control system, guidance subsystem, proximity fuse, warhead, propulsionsystem.
Rocket Performance: Aerodynamics characteristics of airframe components, forces and moments whilepassing through atmosphere,
slender body aerodynamics, drag estimation; Equations of motion for three-dimensional motionthrough atmosphere and vacuum; One- dimensional and two dimensional realist motions in free space and homogeneous gravitational fields. description of vertical inclined and
dimensional and two-dimensional rocket motions in free space and homogeneousgravitational fields, description of vertical, inclined and gravity turn trajectories; Effect of earth's rotation, inertial and non-inertial frames, coordinate transformation; Powered and unpowered
flight, boost-glide trajectory, boost-sustain trajectory, long range cruise trajectory, long range ballistic trajectory, re-entry conditions;
Brief description of fin-stabilized and spin-stabilized missiles and their force systems; Manoeuvring flight: flat turns, pull-ups, relation
between manoeuvrability& static stability margin; Multi-staging of ballistic missiles, separation techniques.
Fundamentals of Guidance: Different phases of missile; Homing guidance categories; Introduction to aerodynamic and jet control
methods; Various types of aerodynamic control methods for tactical and short-range missiles; Various types of thrust vector control
methods; Interception and avoidance.
Rocket Propulsion: Solid, liquid, hybrid rocket motor, single base propellants, double base propellants, composite propellants, CMBD
propellants and their ingredients; Propellant grains and types of burns, erosive burning, pyrotechnicdevices and systems, igniter &
ignition system; Propellant mass fraction, thrust coefficient, characteristic velocity, burn rate, total impulse; Types of nozzles and thrust
Page 20 of 48

vector control.
TEXT BOOKS:-
1. "Missile Design and Systems Engineering", E.L. Fleeman, American Institute of Aeronautics & Astronautics
2. "Missile Guidance and Control Systems", George M. Siouris, Springer
REFERENCE BOOKS:-
1. "Tactical and Strategic Missile Guidance", P. Zarchan, AIAA
2. "Modern Missile Guidance", R. Yanushevsky, CRC Press
3. "Automatic Control of Aircraft And Missiles", John H. Blacelock, Wiley
4. "Missile Guidance and Pursuit: Kinematics, Dynamics and Control", N.A. Shneydor, Woodhead Publishing
"Rocket Propulsion and Spaceflight Dynamics", J.W. Cornelisse, H.F.R. Schöyer& K.F. Wakker, Pitman PublishingLimited

Department Electives: 1-5

Aircraft Performance
Atmosphere: Need to define standard atmosphere; International Standard Atmosphere; Stability of atmosphere; Equivalent,
calibrated and indicated airspeed; Primary flight instruments.
Aerodynamic Characteristics: Forces and moments acting on a flight vehicle, variation of aerodynamic coefficients with angle of
attack, Reynolds number and Mach number; Effect of aspect ratio, planform, sweep, taper and twist on aerodynamic characteristics;
Different types of drag, drag polar, design methods to reduce drag; Variation of thrust, power and SFC with velocity and altitudes for
air-breathing engines.
Steady Level Flight: Equations of motion; Thrust and power required for level unaccelerated flight; Maximum thrust and
power available for jet engine and propeller engine, variation of thrust/power available and required with altitude; Maximum level
flight speed, conditions for minimum drag and minimum power required; Stalling speed; Range and endurance of jet and propeller
engine airplanes; Condition for maximum range and endurance, effect of altitude, weight and wind.
Climbing Flight: Unaccelearated climb; Excess power; Maximum rate of climb and steepest angle of climb, time toclimb, climb
hodograph; Absolute and service ceilings; Accelerated rate of climb, energy approach; Energy manoeuvrability.
Gliding Flight: Steady descent, equilibrium glide angle, equilibrium glide velocity; Minimum rate of sink and shallowestangle of glide,
maximum gliding range; Glide hodograph.
Take-off & Landing Performance: Equations of motion during take-off and landing; Estimation of take-off and landing distances;
Effect of head, tail and cross winds; Auxiliary systems: thrust augmentation, reverse thrust, jet assisted take-offsystem, spoilers.
Manoeuvring Flight: Level coordinated turning flight in horizontal plane, bank angle, load factor, V-n diagram; Minimum turn
radius; Maximum sustained and attained turn rate; Turn in vertical plane, pull-up and pull-down manoeuvres.
High Lift Devices: Different types of trailing edge flaps, leading edge devices, boundary layer control, powered lift.
TEXT BOOKS:-
1. "Aircraft Performance and Design", J.D. Anderson Jr., McGraw Hill
2. "Aircraft Performance", W.A. Mair & D.L. Birdsall, Cambridge University Press
REFERENCE BOOKS:-
1. "Aircraft Performance", M. Saarlas, John Wiley & Sons
2. "Fundamentals of Flight", R.S. Shevell, Pearson Education Limited
3. "Airplane Aerodynamics and Performance", Jan Roskam & Chuan-Tau Edward Lan, DAR Corporation
4. "Aircraft Performance: An Engineering Approach", M.H. Sadraey, CRC Press
5. "Flight Performance of Aircraft", S.K. Ojha, AIAA Education Series
Machine Design
Materials: Mechanical Properties; Selection of material from properties and economic aspects.
Manufacturing Considerations: Standardization, interchangeability, limits, fits, tolerances and surface roughness, BIS.
Design for Strength: Allowable stresses, detailed discussion on factor of safety; Introduction of various design considerations like

strength, stiffness, weight, cost, space etc.; Modes of failure, strength and stiffness considerations; Stress concentration, causes and mitigation.
Design of Members in Bending: Beams, levers.
Design of Members in Torsion : Shafts and shaft couplings, design of keys.
Design of Bearing: Bearing classification, Methods of lubrication, hydrodynamic, hydrostatic, boundary etc.; Journalbearing,
minimum film thickness, Sommerfield number, thermal equilibrium; Selection of anti-friction bearings for different load cycles, bearing life, static & dynamic load carrying capacity.
Fatigue Considerations in Design: Variable load, loading pattern, endurance stresses; Influence of size, surface finish,
notch sensitivity and stress concentration; Goodman line, Soderberg line & Gerber line; Design of machine members subjected to combined, steady and alternating stresses; design of shafts under variable stresses, bolts subjected to variablestresses. TEXT BOOKS:-
1. "Design of Machine Elements", V.B. Bhandari, McGraw Hill Education
2. "Shigley's Mechanical Engineering Design", R.G. Budynas & J.K. Nisbett, McGraw Hill Education
REFERENCE BOOKS:-
1. "Analysis and Design of Machine Elements", V.K. Jadon & S. Verma, I.K. International Publishing House Pvt.Ltd.
2. "A Text Book of Machine Design", A. Karwa, Laxmi Publication
3. "Machine Design", Hall, Holwenko & Laughlin, Schaum's Outlines Series, McGraw Hill
4. "Mechanical Machine Design", Bahl & Goel, Standard Publishers Distributors
"A Textbook of Machine Design", R.S. Khurmi & J.K. Gupta, S. Chand
Experiments in Fluid Mechanics
Basic Concepts: Objective and importance of experimental studies; Properties of fluids, measuring instruments; Principleof similitude; Components of measuring systems.
Experimental Setup: Low speed wind tunnel, high speed wind tunnel, special problems of testing in subsonic, transonic, supersonic
and hypersonic speed regions; Water tunnel, towing tank; Effect of Reynolds number and freestream turbulence; Instrumentation and calibration.
Flow Visualization Techniques: Smoke tunnel; Surface oil flow, tuft visualization; Dye injection techniques; Hele-Shaw apparatus; Interferometer; Shadowgraph; Schlieren system.
Pressure Measurement: Pitot static tube; Manometer; Pressure transducers; Pressure Sensitive Paints.
Velocity Measurement: Hot-wire and hot-film anemometry; Laser Doppler Velocimetry; Particle Image Velocimetry.
Temperature Measurement: Thermometer; Thermocouple; Thermistor.
Force measurement: Different types of balances, internal and external balances; Balance calibration.
Data Acquisition and Signal Conditioning: Data acquisition principle; Static and dynamic response of measuring systems; Analogue to digital conversion; Multiplexing; Types of signals; Fourier Analysis; Analysis of periodic signals.
Uncertainty Analysis: Types of measurement error, error estimation; Error analysis and uncertainty propagation.TEXT BOOKS:-
1. "Instrumentation, Measurements, and Experiments in Fluids", E. Rathakrishnan, CRC Press
2. "Fluid Mechanics Measurements", R. Goldstein, CRC Press

REFERENCE BOOKS:-	
1. "Measurement in Fluid Mechanics", S. Tavoularis, Cambridge University Press	
2. "Springer Handbook of Experimental Fluid Mechanics", C. Tropea, A. Yarin & J.F. Foss, Springer	
"Introduction to Instrumentation and Measurements", R.B. Northrop, CRC Press	
Heat Transfer in Space Application	
Spacecraft Thermal Environments: Need of spacecraft thermal control, launch and ascent environments, environmentof earth orbit, environments of interplanetary missions;Modes of heat transfer, factors that influenceenergy balance in a spacecraft, principles of spacecraft thermal control.	
Passive Thermal Control Techniques: Thermal coating materials; Thermal insulation; Heatsinks; Phase change materials	
Active Thermal Control Techniques: Electrical heaters; Thermal louvers; HPR fluid systems; Heat pipes, Spacebornecooling systems.	
Ablative Heat Transfer: Physical process and calculation of ablation rates, hypersonic ablation of graphite, heat transferat high velocities, heat transfer in rarefied gases-transpiration and film cooling.	
Analysis of Spacecraft Thermal Control: Application of principles for developmentof spacecraft TCS; Thermal testing; Precision temperature control.	
Aircraft Structure - II	
Unsymmetrical Bending: Bending stresses in beams of unsymmetrical sections, general, principal axis and neutral axis methods;Bending stresses in beams of symmetric section with skew loads	
Shear Flow in Open Sections: Thin-walled beams, concept of shear flow, shear centre; Shear flow distribution in	
symmetrical and unsymmetrical thin-walledsections	
Shear Flow in Closed Sections: Bredt-Bathomethod, single and multi-cell structures; Shear flow in single and multicellunder torsion, shear and bending; Shear centre of closed sections	
Buckling of Thin Plates: Rectangular sheets under compression, local buckling stress of thin walled section; Thin walledcolumn strength, crippling strength estimation; Buckling of sheet-stiffener combination, effective width	
Stress Analysis in Wing and Fuselage: Loads on an aircraft, shear force and bending moment distribution for semi- cantilever and othertypes ofwing and fuselage; Shear and bending moment distribution for cantilever and semi-cantilevertypes of beams; Thin-webbed beam with parallel and non-parallel flanges; Shear-resistant web beams	
TEXT BOOKS:- 1. "Aircraft Structures for Engineering Students", T.M.G.Megson, Butterworth-Heinemann	
2. "Analysis and Design of Flight Vehicles Structures", E.H. Bruhn, Jacobs Publishing Inc. REFERENCE BOOKS:-	
3"Theory and Analysis of Flight Structures", R.M. Rivello, McGraw Hill 4. "Aircraft Structures", D.J. Peery & J.J Azar, McGraw Hill	
Aircraft Stability and Control	
 Introduction: Static stability, dynamic stability, longitudinal, lateral and directional stability; Equations of motion Longitudinal Static Stability and Control: Contribution of wing, horizontal tail and fuselage to total moment, canard configuration,	

flying wing configuration; Stick-fixed neutral point and static margin, stick-free neutral point, determination of neutral point by flight test, manoeuvre point; Power contribution to stability, elevator power, elevator angle to trim, elevator hinge movement, stick force and
stick gearing, stick force gradients, aerodynamic balancing
Directional Static Stability and Control: Vertical tail contribution, fuselage contribution, wing contribution, propeller effect;
Rudder power, yaw damping;Rudder-fixed and rudder-free directional stability, asymmetric power,pedal forces,rudder lock
Lateral Static Stability and Control: Effect of wing location, sweep and dihedral, fuselage and vertical tail; Couplingbetween
rolling and yawing moments; Adverse yaw effects; Aileron reversal; Lateral control power; Roll damping, directional divergence
Dynamic Stability and Control: Euler angles, Equations of motion, stability & control derivatives;Decoupling
oflongitudinal and lateral-directional dynamics; Longitudinal modes; Lateral-directional modes; Autorotation and
spin;Control response, impulse and step response.
TEXT BOOKS:-
1. "Flight Stability and Automatic Control", R.C. Nelson, McGraw Hill Education
2. "Flight Dynamics Principles", M.V. Cook, John Wiley & Sons Inc. REFERENCE BOOKS:-
1. "Performance, Stability, Dynamics and Control of Airplanes", B.N. Pamadi, AIAA
2 "Airplane Performance, Stability and Control", C.D. Perkins & R.E. Hage, John Wiley & Sons
3. "Mechanics of Flight", R.H. Barnard, D.R. Philpott & A.C. Kermode, Prentice Hall
4. "Mechanics of Flight", W.F. Phillips, John Wiley & Sons
5. "Dynamics of Flight: Stability and Control", B. Etkin& L.D. Reid, John Wiley & Sons
Aerospace Propulsion-II
Propeller Theory: Momentum theory, blade element theory, combined blade element and momentum theory, propeller power losses,
propeller performance parameters.
Fundamentals of Combustion: Thermochemistry, stoichiometric ratio and mixture ratio, energy release during combustion, heat of formation, heat of combustion, stoichiometric reaction; Adiabatic flame temperature, flammability and stability limits; Premixed and diffusion flames; Chemical equilibrium, chemical kinetics, reacting flow, frozen flow.
Gas Turbine Combustors: Types of aviation fuels; Classification of combustion chambers, important factors affecting combustion
chamber design; Combustion process; Combustion chamber performance; Ignition and engine starting; Flame tube cooling; Flame stabilization; Afterburners, supercharging.
Ramjet Propulsion: Operating principle of ramjet propulsion, types of ram propulsion; Efficiencies of different components; Critical,
subcritical and supercritical modes of combustion; Need for supersonic combustion for hypersonic propulsion, salient features of
scramjet engine and its applications for hypersonic vehicles, problems associated with supersonic combustion.
Rocket Propulsion: Brief history and principle of rocket; Rocket equation; Classification of rockets, mass ratio of rocket; Solid
propellant rockets, estimation of solid propellant adiabatic flame temperature; Salient features of liquid propellant rockets, selection of
liquid propellants, thrust control in liquid rockets, cooling in liquid rockets; Hybrid rocket propulsion; Rocket nozzles, conical nozzle
and contour nozzle, under and over expanded nozzles, flow separation in nozzles, unconventional nozzles; Nozzle performance, nozzle
area ratio, mass flow rate, characteristic velocity; Thrust coefficient, performance parameters; Staging and clustering.
Advanced Propulsion Techniques: Arc jet, Resisto jet; Hall effect thrusters; Electric rocket propulsion; Ion propulsion techniques;

Nuclear rocket; Solar sail; Preliminary Concepts in nozzleless propulsion; Thrust reverser; Stealth technology.
TEXT BOOKS:-
1. "Rocket Propulsion Elements", G.P. Sutton & O. Biblarz, John Wiley & Sons
2. "Theory of Aerospace Propulsion", P.M. Sforza, Butterworth-Heinemann
REFERENCE BOOKS:-
1. "Aerospace Propulsion System", T.A. Ward, Wiley
2. "Aerospace Propulsion", T.W. Lee, Wiley-Blackwell
3. "Aircraft Engines and Gas Turbines", J.L. Kerrebrock, The MIT Press
4. "Aircraft Propulsion and Gas Turbine Engines", A.F. El-Sayed, CRC Press
"Understanding Aerospace Chemical Propulsion", H.S. Mukunda, I.K. International Publishing House Pvt. Ltd
Airport Management and Aircraft Maintenance
Introduction: The evolution of aviation, growth drivers, issues and challenges; Global and Indian aviation industry; major players in aviation industry in India, SWOT analysis of the different airline companies in India; market potential and current challenges of airline industry in India.
Aircraft Rules: ICAO, international environmental protection policies;Airport Authority of India, DGCA, Airport Economic Regulatory Authority of India; Aircraft Act 1934, The Aircraft Rules 1937, Civil Aviation Requirements (CAR); Aircraft manuals, Airworthiness Advisory Circular, Aeronautical Information Circulars; Issue of type approval.
Airport Planning and Management: Types of airports; Airport layouts and configurations; Ground handling, air cargo management, various airport services; Airline's impact on airport; Effect of privatization; An overview of any international airport.
Air Traffic Control: Principles of Air Navigation and Air Traffic Control; Classification of ATS air spaces; Assignment of cruising levels; Air traffic zones and approach areas, radio/radar communications and landing aids, methodology for slot allocation, aerodrome data; Airport & aircraft security, crisis management at airports.
Airworthiness: Knowledge of various mandatory documents issued to establish airworthiness of aircraft parts; Airworthiness requirement for gliders, micro-light aircraft, ferry flight and hot air balloons; Flight manuals; Import/Export of aircraft; Load and trim sheet; Cockpit check list, preparation and use of concept and emergency check list, defect recording, reporting, investigation,
rectification; Aircraft inspection; Various logbooks required to be maintained for aircraft, method of maintaining the logbook. Maintenance of Aircraft Structural Components: Types of maintenance schedules, damage investigation, non-destructive testing;
Ensuring quality welds; Soldering and brazing;Sheet metal repair and maintenance;Maintenance and repair of plastic components;Inspection and repair of composite components; Installation and maintenance of instruments; Inspection and maintenance of various aircraft systems such as power plant, landing gear system, air-conditioning and pressurization system, fuel & hydraulic system, position and warning system,auxiliary systems.
Licensing of Aircraft Maintenance Engineers: Knowledge of privileges and responsibilities of the various categories of AME Licence and approved persons; Two types of maintenance; Human performance and limitations relevant to the duties of an aircraft maintenance engineer licence holder; Student flight engineer; Validation of foreign AME licence.
TEXT BOOKS:-
1. "Airport Planning and Management", S.B. Young & A.T. Wells, McGraw-Hill Education
2. "Aviation Maintenance Management", H.A. Kinnison& T. Siddiqui, McGraw Hill Education Page 35 of 48

REFERENCE BOOKS:-	
1. "Fundamentals of Aircraft Maintenance Management	', H. Timothee, Notion Press
2. "Airport Management", C.D. Prather, Aviation Suppli	
3. "Aircraft Maintenance and Repair", M. Kroes& R. St	erkenburg, McGraw Hill Education
4. "Aviation Management: Global and National Perspec	
"Air Transportation: A Management Perspective", J. G. Wen	sveen, Routledge
Helicopter Engineering	
Introduction: Chronological development, Types of main ro	tor configurations, Types of helicopters
Fundamentals of Rotor Aerodynamics: Introduction, Disc	loading, Power loading, Induced inflow ratio, Thrust and Powercoefficients,
Figure of Merit, Rotor solidity, blade loading coefficients, Bl	ade lock number
Momentum Analysis: Introduction to hover, axial climb and	descent, forward flight
Blade element Analysis: Introduction to hover, axial climb a	nd descent, forward flight
	formance, forward flight performance: Induced power, bladeprofile power,
parasitic power, climb power, Tail rotor power, Total power	
	irements, Design of main rotor: rotor diameter, tip speed, rotorsolidity,
number of blades, blade twist, blade planform and tip shape,	airfoil sections
TEXT BOOKS:-	
1 "Principles of Helicopter Aerodynamics", J. Gordon	
2 "Basic Helicopter Aerodynamics", John M. Seddon, S	Simon Newman
REFERENCE BOOKS:-	
1 "Helicopter Theory", Wayne Johnson,	
"Helicopter Performance, Stability, and Control", Raymond V	V. Prouty
Artificial intelligence	
Introduction: Artificial intelligence and related fields, brief	nistory of AI; Applications of artificial intelligence; Definitionand
importance of Knowledge and Learning.	
	ce search, problem formulation; Problem types, well-definedproblems,
constraint satisfaction problem, game playing, production sys	
	h first search, breadth first search, depth limit search, search strategy
	st first search, greedy search, A* search; Adversarial search techniques:
minimax procedure, alpha beta procedure.	
	amples; Explanation based learning; Learning by analogy; Learning by
simulating evolution; Learning by training neural nets; Learn	
	foundations of knowledge representation and reasoning, representing and
	space; Predicate logic, situation calculus, description logics, reasoning with
defaults, reasoning about knowledge, sample applications.	
Decision-Making : Basics of Utility Theory; Decision Theory	
Fuzzy Set Theory: Introduction to fuzzy set with properties;	Fuzzy relations; Fuzzy arithmetic; Fuzzy logic; Fuzzy control.TEXT

BOOKS:-	
1. "Artificial Intelligence: A Modern Approach", S.J. Russell & P. Norvig, Pearson Education India	
2. "A First Course in Artificial Intelligence", Deepak Khemani, McGraw Hill Education	
REFERENCE BOOKS:-	
1. "Artificial Intelligence", R. Knight, McGraw-Hill	
2. "Neural Networks: A Comprehensive Foundation", S. Haykin, Pearson Education	
3. "Artificial Intelligence", P.H. Winston, Pearson Education	
4. "Artificial Neural Networks", B. Yegnanarayana, Prentice Hall of India	
"Artificial Intelligence", E. Rich, K. Knight & S.B. Nair, McGraw Hill Education	
Refrigeration and Air conditioning	
Introduction: Brief history and need of refrigeration and air conditioning, methods of producing cooling, ton of	
refrigeration, coefficient of performance, types and application of refrigeration and air condensing systems.	
Refrigerants: Classification, nomenclature, desirable properties; Eco-friendly refrigerants and environmental issues of	
refrigeration & air conditioning industry.	
Vapour Compression Refrigeration (VCR) Systems: Simple vapour compression refrigeration systems; Analysis of VCRcycle	
considering degrees of subcooling and superheating, VCR cycle on P-V, T-s and P-h diagrams; Actual VCR cycle; Comparison of VC	
cycle with air refrigeration cycle.	
Aircraft Refrigeration System: Necessity of cooling the aeroplane; Reversed Carnot cycle and its limitation; ReversedBrayton cycle;	
Bell-Coleman cycle; Aircraft refrigeration systems; Working and analysis of simple, bootstrap, reduced	
ambient and regenerative air refrigeration systems.	
Psychrometry and Air-conditioning Processes: Properties of moist air: specific humidity, dew point temperature, degree	
of saturation, relative humidity, wet bulb temperature; Psychrometric chart; Psychrometry of air conditioning processes; Mixing	
process and other basic processes in conditioning of air.	
Air-Conditioning Load Calculations: Outside and inside design conditions, sources of heating load, sources of cooling load, heat	
transfer through structure, solar radiation, electrical applications, infiltration and ventilation, heat generation insideconditioned space.	
TEXT BOOKS:-	
1. "Refrigeration & Air Conditioning", R.C. Jordan & G.B. Priester, Prentice Hall of India	
2. "Refrigeration & Air Conditioning", C.P. Arora, McGraw Hill Education	
REFERENCE BOOKS:-	
1. "Refrigeration and Air Conditioning", W.F. Stoecker & J.W. Jones, McGraw Hill Education	
2. "Basic Refrigeration and Air Conditioning", P.N. Ananthanarayanan, McGraw Hill Education	
3. "Refrigeration and Air Conditioning", Manohar Prasad, New Age International Private Limited	
4. "Refrigeration and Air Conditioning", R.C. Arora, Prentice Hall India Learning Private Limited	
"Refrigeration and Airconditioning: High Side Design", Arvind Agrawal, New Academic Science Limited	
Introduction to Avionics	
Introduction to Avionics: Basics of avionics, need of avionics in civil and military aircraft and space systems; Cockpitbasics;	
Integrated avionics architecture, typical avionics system and subsystems.	

8	onics Bus Architecture: Data buses MIL-STD-1553B, RS-232, RS-422, RS-485, AFDX, ARINC 664, ARINC C 629; Aircraft system interface.
e	x and Display Systems : Flight deck display technologies, CRT, LED, LCD, Touch screen, Head up display, Electronic tion systems.
Audio and	Communication Systems: Aircraft audio systems, basic audio transmitter and receiver principles, VHF communication F communication systems.
Ranging ar	d Landing Systems : VHF omnidirectional range, VOR receiver principles, distance maturity equipment, principles of instrument landing system, localizer and glide slope.
Position Inc	ertial and Navigation System: Satellite navigation systems, GPS principles, triangulation, position accuracy, applications in inciple of operation of INS, navigation over earth, components of inertial navigation systems, accelerometers, gyros and
	e System: ATC surveillance systems, principles and operations; Standards; Collision avoidance system; Ground proximity
Auto Flight	System: Basic principles of auto pilot, longitudinal and lateral auto pilot;Automatic flight control system; Fly- by-wire and technologies; Flight director systems; Flight management systems.
1. "Intr 2. "Intr	oduction to Avionics Systems", R.P.G. Collinson, Springer oduction to Avionics", D.R. Cundy & R.S. Brown, Pearson CE BOOKS:-
1. "Digital A	Avionics Handbook", C.R .Spitzer, U. Ferrel& T. Ferrel, CRC Press
	nciples of Avionics", A. Helfrick, Avionics Communications Inc. Inciples of Modern Avionics", S. Nagabhushana& N. Prabhu, I.K. International Publishing House
4. "Civ	il avionics system" & "Military Avionics Systems", I. Moir, A. Seabridge & M. Jukes, Wiley-Blackwell onics Fundamentals", Jeppensen, Aviall Services
Viscous Flo	W
tensor notati Newtonian a viscosity; Pł	n: Ideal and real fluid, viscosity in real flows and its effect, d'Alembert's paradox; Laminar and turbulent flow; Vector and ion; Material derivative; Acceleration, translation, rotation and distortion of fluid element; Shear stress and shear strain, and non-Newtonian fluids, coefficient of dynamic viscosity and its variation with temperature, coefficient of kinematic nysical significance of Reynolds number; Vorticity.
	on Laws: Continuity equation for compressible and incompressible flows, conservative and non-conservativeform;
equation c	of Navier-Stokes equations and its simplification for incompressible flow, Stokes hypothesis; Energy conservation
	ion of Simplified Flows : Internal viscous flow in pipes and ducts, Couette flow, lubrication theory, Hagen- Poiseuille ady parallel flow; External viscous flow over flat plates; Creeping flow, Stokes equations, Stokes law.
Laminar Bo	oundary Layer: Laminar boundary layer equations; Displacement, momentum and energy thickness, shape factor; Kármán integral equation; Similarity solutions, Blasius solution, Kármán-Pohlhausen method for non zeropressure gradient, Holsten

and Bohlen method, Waltz's-Quadrature formula; Boundary layer separation, effect of pressuregradient, boundarylayer control.
Turbulent Flows: Introduction to turbulent flows, features of turbulence, energy cascade, turbulence length scales; Different modes of
transition to turbulence; Intermittency factor, mean and fluctuating components, derivation of Reynolds Averaged Navier-Stokes
equations, Reynolds stress tensor; Skin friction coefficients for hydrodynamic smooth and rough pipes, Darcy-
Weisbach equation, Moody's chart; Turbulent boundary layer equations, eddy viscosity and mixing length hypothesis; Structure
of turbulent boundary layer, universal law of wall, laminar sublayer, power law for turbulent boundary layer.
TEXT BOOKS:-
1. "Viscous Fluid Flow", F.M. White, McGraw Hill Education
2. "Fluid Mechanics", P.K. Kundu, I.M. Cohen & D.R. Dowling, Academic Press
REFERENCE BOOKS:-
1. "Boundary Layer Theory", H. Schlichting, McGraw Hill Education
2. "Viscous Flow", H. Ockendon & J.R. Ockendon, Cambridge University Press
3. "Fluid Mechanics", R.W. Fox, A.T. McDonald, P.J. Pritchard, J.W. Mitchell, Wiley India Edition
4. "Viscous Flows: The Practical Use of Theory", S.W. Churchill, Butterworth-Heinemann Ltd.
"Viscous Flow", Frederick S. Sherman, McGraw-Hill Inc.

Fluid Mechanics Lab
Calculation of meta-centric height for a given body
Verification of Bernoulli's theorem
Velocity measurement using Pitot-static tube
Calibration and flow rate determination using venturimeter and orificemeter
Characterization of flow through notches and weir
Determination of head loss in given length of pipe and calculation of friction factor
• Demonstration of laminar, turbulent and transient flow in pipe and calculating the Reynolds number
Calculation of coefficient for minor losses in pipes due to sudden expansion and contraction
Measurement of velocity distribution in a pipe and calculation of discharge
 Measurement of boundary layer velocity profile over a flat plate and to determine the boundary layer thickness Performance characteristics of centrifugal and reciprocating pump
• Evaluation of performance of different types of turbines
Calculation of losses due to sudden expansion and contraction
• Experiments on potential flow analogy (Hele-Shaw flow)
Smoke flow visualization over streamlined and bluff bodies
• Study of features of vortex formed in a tube
REFERENCE BOOKS:-
1. "Experiments in Fluid Mechanics", Sarbjit Singh, PHI Learning
2. "Laboratory Experiments in Fluid Mechanics", K.R. Arora, Standard Publications
3. "Fluid Mechanics and Machinery Laboratory Manual", N. Kumara Swamy, Charotar Publishing House Pvt. Ltd.
Metrology Lab
Study of various measuring tools like dial gauge, micrometer, VernierCalliper and telescopic gauges
• Measurement of angle and width of a V-groove by using bevel protector
• Measurement of angle by using sine bar
Measurement of gear tooth thickness by using gear tooth Vernier Calliper
• To measure a gap by using slip gauges
• To check accuracy of gear profile with the help of profile projector

•	To determine the effective diameter of external thread by using three-wire method
•	Study and use of surface roughness instrument
•	To check the accuracy of a ground, machined and lapped surface
	Aerodynamics Lab
•	Study of components of subsonic wind tunnel
•	Calibration of wind tunnel test section
•	Measurement of pressure distribution over smooth and rough cylinder
•	Measurement of pressure distribution over symmetric and cambered airfoils
•	Force measurement using strain gauge balance over models of different shapes
•	Flow visualization of flow over a delta wing at different incidences
•	Assessment of effect of streamlining on reduction of drag
•	Smoke flow visualization over airfoil and cylinder
•	Boundary layer measurements over flat plate
•	Calculation of displacement thickness over airfoil at different locations
•	Calibration of hot wire anemometer and freestream turbulence measurement
•	Use of pressure sensors for pressure measurement
•	Study of velocity measurement using LDV & PIV
•	Characterization of subsonic jets
TEX	XT BOOKS:-
	1. "Instruments, Measurements and Experiments in Fluids", E. Rathakrishnan
DE	2. "Low-Speed Wind Tunnel Testing", J.W. Barlow, W.H. Rae & Alan Pope, John Wiley & Sons
KE	FERENCE BOOKS:- 1. "Fluid Mechanics Measurements", R. Goldstein, CRC Press
	 "Experimental Aerodynamics", S. Discetti& A. Ianiro, CRC Press "Experiments in Aerodynamics", S.P. Langley, Hardpress Publishing
	4. "Aerodynamic Measurements: From Physical Principles to Turnkey Instrumentation", G.P. Russo, WoodheadPublishing
	5. "Theoretical and Experimental Aerodynamics", M. Kaushik, Springer
	Manufacturing Process Lab
Ma	achine Shop
•	Study of centre, capstan and automatic lathes and their accessories
•	Plane turning and step turning
•	Taper turning, knurling and chamfering

- Thread cutting and grooving ٠
- Drilling and boring ٠
- Study of shaper machine and its mechanism
- Study of milling machine, milling cutters, indexing heads and indexing methods and to prepare a gear on milling machine
- Study of single point cutting tool geometry and to grind the tool as per given geometry ٠

Foundry Shop

- Preparation of mould using given pattern requiring core and prepare a casting using aluminium ٠
- Moisture test and clay content test •
- Strength test (compressive, tensile, shear transverse etc. in green and dry conditions) •
- Permeability test •
- A.F.S. sieve analysis test ٠

Welding Shop

- Hands-on practice on electric-arc welding
- Demonstration of oxy-acetylene gas welding ٠
- Study of metal inert gas welding (MIG) and tungsten inert gas welding (TIG) ٠

REFERENCE BOOKS:-

- 1. "Mechanical Workshop Practice", K.C. John, Prentice Hall India Learning Private Limited
- 2. "Workshop Practice", Swarn Singh, S.K. Kataria& Sons
- 3. "Elements of Workshop Technology", S.K. Hajra Choudhury & Nirjhar Roy, Media Promoters & Publishers Pvt. Ltd.
- 4. "A Textbook of Workshop Technology", D. Dhounchak& L.K. Biban, White Falcon Publishing

5. "Workshop Practice", H.S. Bawa, McGraw Hill Education
Heat Transfer Lab
 Calculation of thermal conductivity of insulating powders in spherical cavity
 Determination of thermal conductivity of a metal rod
Calculation of total thermal resistance of the given compound resistance in series
• To determine the heat transfer rate and temperature distribution for a pin fin
• To determine the surface heat transfer coefficient for heated vertical cylinder in natural convection
• To find the heat transfer coefficient in forced convection in a tube
• Study and comparison of LMTD and effectiveness in parallel and counter flow heat exchangers
Determination of heat transfer coefficient in dropwise and filmwise condensation

	 Measurement of emissivity of the test plate surface Evaluation of Stefan-Boltzmann constant for radiative heat transfer
	Aircraft System Lab
-	 Fuel quantity indicator principle mock-up
	 Aircraft Fuel Quantity & Fuel Flow Mock-Up
	• Auto Pilot Mock-up
	• AC Generator test benchwith Generator Control Unit (GCU)
	• RPM indicator Mock-up.
	• 'Flow test' to assess of filter element clogging
	• 'Pressure test' to assess hydraulic external/internal leakage
	• Maintenance and rectification of snags in pneumatic, hydraulic and fuel systems components and on aircraft
	Functional test of aircraft landing gear retraction system and its relevant indications in the cockpit
	Vibration Lab
	• To verify time period a simple pendulum
	To determine radius of gyration of compound pendulum
	• To determine the radius of gyration of given bar by using bifilar suspension
-	• To determine natural frequency of a spring mass system
	 To determine natural frequency of free torsional vibrations of single rotor system To verify Dunkerley's rule
	 Performing the experiment to find out damping coefficient in case of free damped torsional vibration
	 To conduct experiment of trifilar suspension
	 Hormonic excitation of cantilever beam using electro-dynamic shaker and determination of resonant frequencies
	 Study of vibration measuring instruments
]	Perform study of the following using Virtual Lab: <u>http://www.vlab.co.in/</u>
	• Forced vibration of a cantilever beam with a lumped mass at free end
	• Harmonically Excited Forced Vibration of a Single DOF System
	• Forced Vibration of a Cantilever Beam with a Lumped Mass at Free End
	Harmonically Excited Forced Vibration of a Single DOF System
Ι	Mechanics of Solids Lab
	Introduction to Universal Testing Machine
	Use of Izod Impact Tester to measure impact loads
	Calculation of Young's modulus of aluminum and steel

	• Determination of fracture strength and fracture pattern of ductile & brittle materials
	Testing torsion load using Torsion Tester
	Measurement of buckling load for columns
	• Performing tensile test and characterizing elastic limit, strain hardening, necking and yield point
	• Compression testing of a metal chip and calculation of compressive strength
	• Shear testing
	Bending test and determination of Young's Modulus of Elasticity via deflection of beam
	• Performing fatigue test on a given material and to determine its fatigue strength
	Creep testing and its significance
	Computational Fluid Dynamics Lab
	Introduction to ANSYS Fluent, its features and different options Generation
	of structured and unstructured mesh over simple objectsBoundary layer
	resolution and grid independence test
	Flow over flat plate and use of transition models
	Inviscid and viscous flow over circular cylinder at different Reynolds numberLaminar
	and turbulent flow in a pipe
	Flow over airfoil at high Reynolds number and use of different turbulence modelsSupersonic
	flow past wedge and cone
	Transonic flow over subsonic and supercritical airfoilsFlow over
	finite wing
	Flow in nozzles and diffusers
	Writing codes in C/ C++/ MATLAB/ Python for simple flow fields
	REFERENCE BOOKS:- 1. "ANSYS Fluent Tutorial Guide", Sylvain Serra
	"ANSYS FLUENT 14.0 Simulation Analysis and Design Optimization", S.B. Cheng & L.M.G. Bian, Machinery Industry Press
	3. "FLUENT Learning Modules", S. Weidner, Cornell University Confluence
	(https://confluence.cornell.edu/display/SIMULATION/FLUENT+Learning+Modules)
	"ANSYS Workbench 14.0 for Engineers and Designers", Sham Tickoo, Dreamtech Press
	Aeromodelling Lab
	Design and fabrication of fixed-wing gliders
	Comparison of properties of thermocole, balsa wood, Styrofoam, composites for aeromodel fabricationDetailed
	design of fixed-wing powered aeromodels
L	

Design, fabrication and testing of different components
Aerodynamic and structural design
Use of flight simulator
Concepts used in unconventional UAVs such as rotary wing models and ornithopters
Aircraft Structures Lab
Calculation of Young's modulus of aluminium and steel
Determination of fracture strength and fracture pattern of ductile & brittle materialsDeflection
of beams with various end conditions for different load
Verification of Maxwell's Reciprocal theorem & principle of superposition
Measurement of strain using strain gauges
Shear centre location for open and closed sectionsEstimation
of principle axes
Compression tests on long and short columns and determination of buckling loadWagner's Theorem
Composite Materials Lab
Preparation of Continuous fibre reinforced Polymer Composites Preparation of
Dis-Continuous Fibre reinforced Polymer CompositesStudy of Tensile strength
and Youngs modulus of FRP composites Study of Flexural strength of FRP
composites
Study of Hardness of FRP compositesStudy of
drop weight impact testing Preparation of
composites
Study of microstructure, hardness and density of these compositeStudy of
Tensile strength of Al-SiC composites
Environmental Testing (Humidity and temperature)Study of Tribological behaviour of composites
Aircraft Design Lab
Conceptual design based on preliminary mission requirements
 Survey of existing vehicular configurations (in similar category)
Preliminary weight estimation
Calculation of wing loading and thrust loading
Selection of wing parameters
Selection of fuselage parameters and internal layout
 Selection of engine Location of engines and londing goor
Location of engines and landing gear

• Design of tail areas and control surfaces
• Estimation of weights of various components
Calculation of centre of gravity and its shift
Estimation of aerodynamic characteristics and performance evaluation
• Estimation of spanwise load distributions on wing and tail
• V-n diagram for the design study
Estimation of cost and airworthiness of airplane, trade-off studies
TEXT BOOK:-
1. "Aircraft Design: A Conceptual Approach", D.P. Raymer, AIAA Educational SeriesREFERENCE BOOKS:-
1. "Fundamentals of Aircraft Design", L.M. Nicolai, METS Inc.
2. "Synthesis of Subsonic Airplane Design", E. Torenbeek, Springer
3. "Aircraft Conceptual Design Synthesis", D. Howe, Wiley
4. "Aircraft Design Projects: For Engineering Students", L.R. Jenkinson & J.F. Marchman, AIAA Education Series
"Civil Jet Aircraft Design", L.R. Jenkinson, P. Simpkin & D. Rhodes, AIAA Education Series
FEA Lab
Introduction of GUI of the software ANSYS
Analysis of trusses
• Analysis of beams and frames (bending and torsion problems)
Plane stress and plane strain analysis problems
Problems leading to analysis of axisymmetric solids
• Problems leading to analysis of three dimensional solids
• Heat transfer problems
Model analysis problems for natural frequency determinationTEXT
BOOKS:-
1. "Finite Element Analysis: Theory and Application with ANSYS", S. Moaveni, Pearson Education Limited
"Engineering Analysis with ANSYS Workbench 18", G. Zhang, College House Enterprises
REFERENCE BOOKS:-
1. "Finite Element Modeling and Simulation with ANSYS Workbench", X. Chen & Y. Liu, CRC Press
2. "Practical Aspects of Finite Element Simulation – A Student Guide", free ebook by Altair University
3. "Working with ANSYS: A Tutorial Approach", D. Zindani, A.K. Roy & K. Kumar, I.K. International PublishingHouse Pvt.
Ltd.
4. "ANSYS Workbench 14.0 for Engineers and Designers", S. Tickoo, Dreamtech Press
"Introduction to ANSYS 16.0", R.B. Choudary, I.K. International Publishing House Pvt. Ltd.

BasicFluid Mechanics Concepts:Streamfunction;Vorticity, circulation, relation between circulation and vorticity; Kelvin's theorem; Helmholtz theorems.

Potential Flow: Velocity potential; Laplacian flow, principle of superposition; Elementary flows: uniform flow, source, sink, vortex & doublet; Potential flow past stationary and rotating circular cylinder, d'Alembert paradox, Magnus effect; Kutta- Joukowski theorem; Blasius theorem.

Flow overAirfoils: Airfoil geometry, angle of attack, sectional forces and moment coefficients, centre of pressure and aerodynamic centre;Kutta condition; Introduction to conformal mapping, Kutta-Joukowski transformation; Thin AirfoilTheory, Theodorsen's condition;Real flow effects, effect of angle of attack on pressure distribution, airfoil stall, profile drag.

Flow over Finite Wings:Wing geometry, forces and moment coefficients;Wingtip vortices, downwash, induced drag; Lifting Line Theory and its limitations, elliptical and general lift distribution;Simplified horseshoe vortex;Qualitative discussion of flow over delta wings.

Experimental Aerodynamics:Types and components of subsonic wind tunnel, flow quality; Correlation of experimental results to actual prototypes; Flow visualization techniques; Instrumentation for pressure, velocity and force measurement.

TEXT BOOKS:-

3. "Fundamentals of Aerodynamics", J.D. Anderson, McGraw-Hill Higher Education

4. "Aerodynamics for Engineering Students", E.L. Houghton, P.W. Carpenter, S. Collicott& D. Valentine, Elsevier REFERENCE BOOKS:-

5. "Aerodynamics for Engineers", J.J. Bertin&R.M. Cummings, Pearson Education India

6. "Theoretical Aerodynamics", E. Rathakrishnan, John Wiley & Sons

7. "Basic Aerodynamics: Incompressible Flow", G.A. Randro, H.M. Macmohan&R.L. Roach, Cambridge UniversityPress

8. "Low Speed Aerodynamics", K. Ghosh, PHI Learning

"Flight Vehicle Aerodynamics", M. Drela, MIT Press

Basic Concepts: Compressibility; Laws of thermodynamics, perfect gas; Mach number, shock and Mach waves; Governing equations for compressible flows.

Steady One-Dimensional Isentropic Flow: Continuity, momentum and energy conservation equations; Stagnationtemperature and pressure; Expression for speed of sound; Normal shock, Rayleigh flow, Fanno flow.

Quasi One-Dimensional Flows: Governing equations; Area-velocity relations; Isentropic flow through variable-areaducts, convergent-divergent (or De Laval) nozzles, over-expanded and under-expanded nozzles, diffusers.

Two-Dimensional Flows: Oblique shock wave and its governing equations, θ -B-M relations, attached and detached shock; Expansion waves, Prandtl-Meyer flow and its governing equations, Supersonic flow over convex and concavecorners.

Airfoils in Compressible flow: Critical Mach number and critical pressure coefficient, drag divergence Mach number; Shock boundary layer interaction; White comb area rule, supercritical airfoil, swept and delta wings, supersonic aerofoils, wave drag; Similarity rules.

Experiments in Compressible Flow: Transonic, supersonic and hypersonic tunnels and their peculiarities; Blowdown,indraft and continuous wind tunnels; Shock tubes; Optical methods of flow visualization.

TEXT BOOKS:-

3. "Modern Compressible Flow", John D. Anderson Jr., McGraw Hill

4. "Gas Dynamics", E. Rathakrishnan, Prentice Hall of India Pvt. Ltd. REFERENCE BOOKS:-

5. "Compressible Fluid Dynamics", P. A. Thomson, McGraw-Hill

6. "Elements of Gas Dynamics", H. W. Liepmann & A. Roshko, Wiley & sons

7. "Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion", S. M. Yahya, Wiley Eastern Ltd.

8. "Compressible Fluid Flow", P. H. Oosthuizen & W.E. Carscallen, McGraw-Hill

"Instruments, Measurements and Experiments in Fluids", E. Rathakrishnan