SCHEME PIE 2017-18.pdf

UD_Btech_17-18_PIE Sylb.pdf

Department of Mechanical Engineering Scheme & Syllabus of Bachelor of Technology

Production & Industrial Engineering

From III to VIII Semester

Effective from Academic session 18-19 For students admitted in session 2017-18

University Teaching Departments Rajasthan Technical University, Kota

B.Tech. Mechanical Engg. Syllabus for University Teaching Dept., RTU, Kota. 9 VS

Galain

Approved Dean, FA & UD

Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 2

×

Som	Codes	Proposed Scheme, PIE JUD	Credite	Cont	act hr	s/wk	ТА	End	Total	
Sem	Codes	Troposeu Scheme-The-OD		L	Т	P	IA	term	TOtal	
	3PIU1	Advanced Engineering Mathematics-I	4	3	1	0	50	100	150	
	3PIU2	Engineering Thermodynamics	4	3	0	0	50	100	150	
	3PIU3	Mechanics of Solid	3	3	0	0	50	100	150	
	3PIU4	Material Science & Engineering	3	3	0	0	50	100	150	
	3PIU5	Fluid Engineering	3	2	1	0	50	100	150	
ш	3PIU6	Foundry & Welding Technology	2	3	0	0	50	100	150	
	3PIU11	Production Practice - I	2	0	0	3	50	25	75	
	3PIU12	Introduction to Mechanical Engineering Lab.	1	0	0	2	50	25	75	
	3PIU13	Material science & Testing Lab.	1	0	0	2	50	25	75	
	3PIU14	Fluid Mechanics Lab.	1	0	0	2	50	25	75	
	3PIU20	Discipline & Extra Curricular activity	1	0	0	0	50		50	
		Sub- Total	25	17	2	9	550	700	1250	
				Contact hrs/wk				End	m -+-1	
Sem	Codes	Proposed Scheme- PIE -UD	Credits	L	Т	P	IA	term	Total	
	4PIU1	Advanced Engineering Mathematics-II	4	3	1	0	50	100	150	
	4PIU2	Design of Machine Element - I	4	3	0	0	50	100	150	
	4PIU3	Work System Design & Ergonomics	3	3	0	0	50	100	150	
	4PIU4	Theory of Machines	3	2	1	0	50	100	150	
	4PIU5	Machining Sciences	3	3	0	0	50	100	150	
τv	4PIU6	Industrial Management	2	3	• 0	0	50	100	150	
1	4 DII 11 1	Production Proctice II	2	0	0	3	50	25	75	
	4FIUI1 4DILL10	Production Engineering Drawing	2	0	0	3	50	25	75	
	4FIU12	Theory of Machines Lab	1	0	0	2	50	25	75	
	401114	Work System Design Lab	1	0	0	2	50	25	75	
	4PILI20	Discipline & Extra Curricular activity	1	0	0	2	50	20	50	
	111020	Sub- Total	26	17	2	10	550	700	1250	
		Sub- Total				10	000		1400	
	/	W. A. W.	Y	1 v						
	5	1 118 2 2 11 1 11			1	2				
. (2/10/19	ann ri		/	and		0/			
	27/21	offr A	/	- 1	00		V			
		2111								

Scheme for B.Tech.- P&IE (Effective from 18-19 with Proposed Credits) / THEORY & PRACTICAL

1

Amel K. Mathus

Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 3

Approved Dean, FA & UD

sem	Codes	odes Proposed Scheme- PIE -UD	Credita	Contact hrs/wk			wk .		
	5DIL11		Credits	L	Т	P	AI	term	Tota
	5PILIO	Inermal Engineering	4	3	1	0	50	100	150
	SPIU2	Design of Machine Element - II	4	2	1	0	50	100	150
	SPIU3	Quality Control & Reliability Engineering	3	3	0	0	50	100	150
	SPIU4	Measurement and Metrology	3	3	0	0	50	100	150
	SPIUS.1	Principles of Machine Tools	4	8-31 ····					
	SPIUS.2	Renewable Energy Systems	3	3 0	0	50	100	150	
	SPIUS.3	Advanced Welding Technology		2			*: 		
V	SPIUG O	CNC Machines & Programming	14 - 14 10			_		-	
	SPIUG 2	Management Information system (MIS)	2	3	0	0	50	100	150
	5PI06.3	Statistics for Decision Making	r 5 ¹						
	5PIU11	Thermal Engineering lab	2	0	0	3	50	25	75
	5PIU12	Machine Tool Design Sessional	1 1	0	0	2	50	25	75
	5PIU13	Metrology Lab.	1	0	0	2	50	25	75
	5PIU14	Quality Control Lab.	1	0	0	2	50	25	75
	5PIU20	Discipline & Extra Curricular activity	1	0	0	0	50		50
		Sub- Total	25	17	2	9	550	700	1250
				Conta	act hrs	/wk		End	
Sem	Codes	Proposed Scheme- PIE -UD	Credits	L	T	P	IA	term	Tota
	6PIU1	Tool Engineering	4	3	1	0	50	100	150
	6PIU2	Facility Planning -	4	2	1	0	- 50	100	150
	6PIU3	Total Quality Management	3	3	0	0	50	100	150
	6PIU4	Operations Research	3	3	0	0	50	100	150
	6PIU5.1	Micro & Nano Manufacturing	·					100	100
	6PILI5 2	Computer Aided Design and Graphics	3	3 0	0	0	50	100	150
	6PILI5 3	Maintenance Management				Ŭ	00	100	
	601100.0	Dete Applytics							
VI		Managerial accounting Finance & Economics		3	0	0	50	100	150
	6 DILIG 2	Managerial accounting, Finance & Economics	— 1	. U		Ŭ	50	100	130
	000.3	Design and Manufacturing of Flastic Floudets							
	6PIU11	Metal cutting Lab.	2	0	0	3	50	25	75
	6PIU12	Industrial Engineering Lab-I	2	0	0	3	50	25	75
	6PIU13	Operations Research Lab.	1	0	0	2	50	25	75
	6PIU14	Statistical lab	1	0	0	2	50	25	75
	6PIU20	Discipline & Extra Curricular activity	1	0	0		50	20	50
		Sub- Total	26	17	2	10	550	700	1250
	2	Scheme & Syllabus: Production & 2017-18 page 10:-	Industrial End		- 0	V I			- C

to a

and the second second

15. 125

100

K. Mathurs Approved Dean, FA & UD

page no.: 4

						1 1		End	÷.				
Sem	Codes	Proposed Scheme, PIF, JID	Cradita	Contact		s/wk	IA	Enu	Total				
00m	00200	Toposea Beneme-TIE-OD	Creuits	L	Т	Р		term					
	7PIU1	Metal Forming Processes	4	3	1	0	50	100	150				
	7PIU2	Operational Planning & Control	4	3	1	0	50	100	150				
	7PIU3	Advance Manufacturing Methods	3	3	0	0	50	100	150				
	7PIU4	Computer Integrated Manufacturing	3	3	0	0	50	100	150				
	7PIU5.1	Modelling & Simulation					_	100	150				
VII	7PIU5.2	Supply Chain Management	3	3	3	3	3	3	0	0	50	100	150
	7PIU5.3	Rapid Prototyping			1			05	75				
	7PIU11	Metal Forming & Tool Design Lab.	2	0	0	3	50	25	75				
	7PIU12	CIMS Lab(CAM, IE & Simulation practicals)	1	0	0	2	50	25	75				
	7PIL113	Project Stage -I	1	0	0	2	50	25	75				
	7011114	Practical training & industrial visit	4	0	0	4	150	75	225				
	701100	Dissipling & Extra Curricular activity	1	0	0	0	50		50				
	791020		26	15	2	11	600	650	1250				
		Sub- Total	20	15	~								

L

				Contact hrs/wk			IA End	End	Total
Sem	Codes	Proposed Scheme- PIE -UD	Credits	L	Т	Р	2.	term	
		Option-A	* 2						
	8 PIII 1	New Enterprise and Innovation Management	3	3	0	0	50	100	150
	8PILI1 2	Engineering Optimization	· · ·					100	150
	8PILI2 1	Product Development and Launching	3	3	0	0	50	100	150
	8PIU2.2	Mechatronics and MEMS					50	100	150
VIII	8PIU3 1	Non-Destructive Evaluation and Testing	3	3	0	0.	50	100	150
	8PIU3.2	Fuel cells and Hybrid Engine Technologies	4		0	1	150	75	225
	8PIU13	Seminar	4	0	0	18	350	175	525
	8PIU14	Project Stage-2	12	0	0	0	50	110	50
	8PIU20	Discipline & Extra Curricular activity	26	9	0	22	700	550	1250
		Sub- Total	20						
	(2 Vor X D /m Scheme & Syllabus: Production & Ir				-	form	r P	Approved

t form Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 5

form

PA Mathus Approved Dean, FA & UD

Sem	Codes	codes Proposed Scheme- PIE -UD	Oradita	Contact hrs/wk			ТА	End	Total
Com			Creatts	L	Т	Р	-	term	,i o cui
		Option-B							
VIII	8PIU13	Seminar	4	0	0	4	150	75	225
VIII	8PIU14	Major Project - Final Stage	21	0	0	36	500	475	975
	8PIU20	Discipline & Extra Curricular activity	1	0	0	0	50		50
		Sub- Total	26	0	0	40	700	550	1250
		Total Marks & Credit ==> (III to VIII sem							
)	154		·				7500
		Total Marks & Credit ==> (I sem - to	200						

C & Bun &

And K. Mathurs Approved Dean, FA & UD

Department of Mechanical Engineering Syllabus of

Bachelor of Technology **Production & Industrial Engineering**

From III to VIII Semester

Effective from Academic session 18-19 For students admitted in session 2017-18

University Teaching Departments Rajasthan Technical University, Kota

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Page 1 - And K. Mathurs Grain Vie this investigation of a Scheme & Syllabus: Production & Industrial Engineering Approved Dean, FA & UD

2017-18 page no.: 7

3PIU1: ADVANCED ENGINEERING MATHEMATICS -1

B.Tech. (P&I) 3rd semester 3L+1T

UNIT	CONTENTS	CONTACT HOURS
I	Laplace Transform: Definition and existence of Laplace transform, properties and formulae, unit step function, Dirac Delta function, Heaviside function, inverse Laplace transform, Convolution theorem, application of Laplace transform to ordinary differential equation, solution of integral equations.	10
п	Fourier Transforms: Fourier Complex, Sine and Cosine transform, properties and formulae, inverse Fourier transforms, Convolution theorem, application of Fourier transforms to partial ordinary differential equation (One dimensional heat and wave equations).	9
III	Z-Transform: Definition, properties and formulae, Convolution theorem, inverse Z-transform, application of Z-transform to difference equation.	7
IV	Numerical Analysis:Interpolation,difference operators- forward, backward, central, shift and average operators, Newton's forward and backward interpolation formulae, Gauss's forward and backward interpolation formulae, Stirling's formula, Lagrange interpolation formula for unequal intervals. Inverse interpolation.	7
v	Numerical differentiation by Newton's, Gauss's and Stirling's formula.Numerical integration: Trapezoidal Rule, Simpson's 1/3 and 3/8 Rule. Numerical solution of ODE of first order: Picard's method, Euler's method, Modified Euler's method, Runge-Kutta fourth order method, Milne's Method.	7
	TOTAL	40

TEXT B	OOK	
1.	Advanced Engineering Mathematics, Jain and Iyengar, Narosa Publications.	
2.	Engineering Mathematics for semesters III and IV, C.B. Gupta, McGraw	
	Hill Education, India.	
3.	Advanced Engineering Mathematics, Denis Zill and Warren Wright, Jones	
	& Bartlett India Private Limited.	
4.	Advanced Engineering Mathematics, O'neil, Cengage Learning, India.	
REFER	ENCE BOOKS	
1.	Advanced Engineering Mathematics, Irvin Kreyszig, Wiley, India.	
2.	Advanced Engineering Mathematics, M. Greenberg, Pearson Education,	
	India.	
3.	Advance Engineering Mathematics, Potter, Oxford, India.	
4.	Engineering Mathematics, Pal and Bhunia, Oxford, India.	
5.	Higher Engineering Mathematics, B. V. Ramana, McGraw Hill Education,	
	India.	
6.	Numerical Methods for Scientific & Engineering Computation, Jain and	
	Iyengar, Jain, New Age International Publication, India.	
7.	A First Course in Numerical Methods, Uri M Asher and Chen Greif, SIAM	
	Publication, India.	
8.	Introductory Methods of Numerical Analysis, S. S. Sastry, PHI Lerning,	
	India.	
9.	Numerical Methods for Engineers, Chapra, McGraw Hill Education, India.	
10). Engineering Mathematics, Paras Ram, CBS Publisher, India.	

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering Approved

Page 2

2017-18 page no.: 8

3PIU2: ENGINEERING THERMODYNAMICS

B.Tech. (P&I) 3rd semester 31.+17

Unit	Contents	Contact Hours
I	Basic Concepts and definitions of Thermodynamics : System, Surroundings, Property, Energy, Thermodynamic Equilibrium, Process, work and modes of work.	2
	Zeroth and First Law of Thermodynamics: Zeroth of Thermodynamics, Temperature scale, First law of thermodynamics, First law analysis of some elementary processes. Steady and unsteady flow energy equations.	5
	Second Law of Thermodynamics: Heat engine, Heat pump and refrigerator, Second law of thermodynamics, Equivalence of the Kelvin-Plank and Clausius statements. Reversible and Irreversible Processes, Carnot engine, Efficiency of a Carnot engine, Carnot principle, thermodynamic temperature scale, Clausis	
II	Inequality. Entropy : Entropy, Calculation of Entropy change, Principle of entropy increase. Temperature-Entropy diagram, Second law analysis of a control volume.	43
	Availability: Available energy, Loss in available energy, Availability Function, Irreversibility.	3
	Thermodynamic Properties of Fluids: Pure substance, Concept of Phase, Graphical representation of p-v-T data, Properties of steam. Steam tables, Mollier chart	4
	Ideal Gas and Real Gas : Ideal gas, Real gas, Internal energy, enthalpy and specific heats of an ideal gas, equations of state, Dalton's law of partial pressures, Gibbs Dalton law, Thermodynamic properties of gas mixtures,	4
	Thermodynamic Relations: Thermodynamic variables, Independent and dependent variables, Maxwell's thermodynamic relations, Thermodynamic relations involving entropy, Thermodynamic relations involving enthalpy and	
IV	internal energy, Joule-Thomson coefficient, Clapeyron equation. Power Cycles: Otto cycle, Diesel cycle, Dual cycle, Brayton cycle & Ericsson cycle	4
v	Vapour power cycle: Rankine cycle, effect of operating conditions on its efficiency, properties of ideal working fluid in vapour power cycle	3
v	Reheat cycle, regenerative cycle, bleeding extraction cycle, feed water heating co-generation cycle.	3
	TOTAL	40

TEX	T BOOK			
1 Nag P.K., Engineering Thermodynamics, Tata Mc-Graw Hill				
REF	TERENCE BOOKS			
SN	Name of Authors /Books /Publisher	Pub.		
1	Chattopadhyay P., Engineering Thermodynamics, Oxford University Press.	2011		
2	Van G.J. Wylen and Sonntag R.E., Fundamental of Thermodynamics, John	2003		
	Wiley &Sons			
3	Cengel Y.A. and. Boles M.A, Thermodynamics-An Engineering Approach,	2011		
	McGraw Hill			
4	Jones J.B.&.Dugan R.E, Engineering Thermodynamics, PH of India.	1996		
5	Rao Y.V.C., An Introduction to Thermodynamics, Wiley Eastern Ltd.	1993		
6	Moran M.J and H.N. Shapiro, Fundamentals of Engineering Thermodynamics,	1996		
	John Wiley and Sons			
7	Rogers, Gorden., Engineering Thermodynamics, Pearson Education	1996		
8	Kroos & Potter, Thermodynamics for Engineers, Cengage learning	2015		
9	Mishra, Engineering Thermodynamics, Cengage learning.	2015		

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19

Page 3

Dean, FA & UD

Scheme & Syllabus: Production & Industrial Engineering Approved 2017-18 page no.: 9

3PIU3: MECHANICS OF SOLIDS

B.Tech.	(P&I)	3rd	semester
3L+0T			

UNIT	CONTENTS	CONTACT HOURS
	Stress and Strain: Elementary definition of stress and strain, stress-	
	strain relationship, elastic, plastic and visco-elastic behavior of	
	common materials in tension and compression test, stress-strain	
_	curves, Hooke's law, Poisson's ratio, elastic constants and their	
I	relations for an isotropic hookean material, anisotropic and orthotropic	•
	materials.	3
	Tension, compression, shearing stress and strain, thermal stresses,	
	composite bars, equations of static equilibrium, concept of free body	E
	Mambara Subjected to Flower Loads. Theory of simple heading.	5
	hending moment and shear force diagrams for different types of static	1
	loading and support conditions on beams	-
II	bending stresses section modulus and transverse shear stress	
	distribution in circular hollow circular I Box T angle sections etc.	
	Strain energy due to bending.	5
	Principal Planes, Stresses and Strains: Members subjected to	
	combined axial, bending and torsional loads, maximum normal and	
111	shear stresses, concept of equivalent bending and equivalent twisting	
	moments, Mohr's circle of stress and strain.	5
	Torsion: Torsional shear stress in solid, hollow and stepped circular	
	shafts, angular deflection and power transmission capacity. Strain	
	energy due to torsional loads.	6
IV	Stability of Equilibrium: Instability and elastic stability, long and	
	short columns, ideal strut, Euler's formula for crippling load for	
	columns of different ends, concept of equivalent length, eccentric	
	loading, Rankine formulae and other empirical relations.	4
	Fransverse Deflection of Beams: Relation between deflection, bending	
v	under static loading, area moment method, direct integration method	6
l v	Thin-walled Pressure Vessels: Stresses in evlindrical and suberical	
	vessels	2
	TOTAL	40

TEX	IT BOOK				
1	Bansal, R. K., "A Textbook of Strength of Materials Laxmi Publications.	2010			
REFERENCE BOOKS					
SN	Name of Authors /Books /Publisher	Year of Pub.			
1	Timoshenko, S.P., and Gere, J.M., "Mechanics of Materials", 2nd Ed., CBS Publishers	2002			
2	Crandall, S.H., Dahl, N.C., and Lardner, T.J., "An Introduction to the Mechanics of Solids", Tata McGraw-Hill	1999			
3	Pytel and <u>Kiusalaas</u> , "Mechanics of Materials" Cengage Learning	2011			
4	Punmia, Jain and Jain, "Mechanics of Materials", Laxmi Publication	2002			
5	Popov, E.P., Nagarajan, S., and Lu, Z. A., "Mechanics of Materials", 2 nd Ed., Prentice-Hall of India	2002			

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 10

Page 4 Approved

3PIU4: MATERIAL SCIENCE AND ENGINEERING

B.Tech.	(P&I)	3rd	semester
3L+OT			

Unit	Contents	Contact Hours
Ţ	Crystal structure – BCC, FCC and HCP, unit cell, crystallographic planes and directions, miller indices. Crystal imperfections, point, line, surface and volume defects.	4
	Frank Reed source of dislocation, Elastic & plastic modes of deformation, Bauschinger's effect, slip & twinning, strain hardening, cold/hot working recovery, re-crystallization and grain growth.	4
п	Classification of Engineering Materials: Solidification of metals and of some typical alloys, mechanism of crystallization (I) nuclear formation (ii) crystal growth, general principles of phase transformation in alloys, phase rule and equilibrium diagrams, equilibrium diagram of binary system having complete mutual solubility in liquid state and limited solubility in solid state, binary isomorphous alloy system, Hume-Rothery rule, binary system with limited solid solubility of terminal phase and in which solubility decreases with	_
	temperature and also alloy with a perifectic transformation, equilibrium diagram of a system whose components are subject to allotropic change. Iron carbon equilibrium diagram, phase transformation in the iron carbon diagram, eutectic, perifectic, eutectoid and perifectoid reactions and	5
	Incrostructures. Isothermal transformation diagrams –cooling curves superimposed on Isothermal Transformation diagram, critical cooling rate. (i) Formation of Austenite from Pearlite (ii) Transformation of Austenite into Pearlite.	4
ш	Full annealing, stress relief, spheroidizing – normalizing, hardening and tempering of steel. Hardenability, Jominey end quench test – Austempering, martempering. Case hardening, carburising, nitriding, cyaniding, carbonitriding. Flame and Induction hardening.	4
TV	Non-Metallic Materials- Polymers – types of polymer, commodity & engineering polymers – Properties & applications of PE, PP, PS, PVC, PMMA, PET, PC, PA, ABS, PI, PAI, PPO,PPS, PEEK, PTFE Polymers. Urea & Phenol formaldehydes.	4
	Constitution of alloys: Solid solutions - substitutional and interstitial. Ferrous and Non Ferrous Metals- Effect of alloying additions on steel (Mn, Si, Cr, Mo, V, Ti & W) - stainless and tool steels – HSLA steel.	4
	Mechanical Properties and Testing: Types of fracture, testing of materials under tension, compression and shear loads – hardness tests (Brinell, Vickers and Rockwell) Impact test Izod and charpy, fatigue and creep test.	4
v	Classification of steels & cast iron. constitution and properties. BIS standards. Engineering Ceramics – Properties and applications of Al2O3, SiC, Si3N4, PSZ etc. Fiber and particulate reinforced composites and resin plastics. Introduction to Nano materials- Nano structured materials. Nano clusters & Nano crystals	A
		40

ТЕХ	KT BOOK	
1	Material Science and Engineering An Introduction, William D.Callister, John	2003
1	Wiley and Sons.	
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Pub.
1	Material Science, Raghvan V., Prentice Hall India	2012
2	Principles of Material Science and Engineering, William F.Smith, Tata	2008
	McGraw-Hill Publications.	
3	Engineering Physical Metallurgy, Lakhtin Y., Mir Publisher.	
4	Introduction to Engineering materials Tata McGraw-Hill Publications.	2011
6	Material Science and Engineering properties, Gilmore, Cengage Learning	2015

B.Tech. P & I E	syllabus for Univers	ity Teaching Dept, R	TU, Kota. Effecti	ve from 18-19
Galain	VS X	en mar	E riter	1822

Page 5 Approved Dean, FA & UD

Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 11

3PIU5: FLUID ENGINEERING

B.Tech. (P&I) 3rd Semester 3L+OT

UNIT	CONTENTS	CONTACT HOURS
	Fluid Properties : Definition of a fluid, Viscosity-dynamic and kinematic, Surface Tension.	3
I	Fluid Statics: Basic equation of fluid statics, Manometers, Force on plane areas and curved surfaces, center of pressure, Buoyant force, Stability of floating and submerged bodies.	5
	Fluid flow concepts and Basic control volume equations : General control equation, conservation of mass, energy equation and its application, Momentum equation and its applications	4
	Basic governing differential equation : Reynolds transport equation, continuity equation, momentum equation, energy equation, Bernoulli's equation.	4
	Viscous flow: Laminar flow through pipe and between parallel plate.	4
III	Turbulent flow: Relation, Prandle mixing length, Losses in open and closed conduit	4
	Measurements : Pressure, velocity, flow measurement-orifices, venturimenter, orificemeter, nozzle meter, notches and weirs.	3
	Flow through pipe: Major and minor Losses in pipe, Hydraulic and energy gradient line, Network of pipes-series and parallel.	5
v	Hydraulic Turbines: Classification of hydraulic turbines, work done and efficiencies of Pelton, Francis and Kaplan turbines, Draft tube, Specific speed and unit quantities	5
	Hydraulic systems: Hydraulic press, Hydraulic accumulator, Hydraulic Intensifier, Hydraulic Ram, Hydraulic lift, Hydraulic coupling, Hydraulic torque convertor Gear pump.	3
	TOTAL	40

TEX	ат воок	
1	Yunus A. Cengel and Cimbala, Fluid Mechanics, Tata McGrawHill,	2006
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Pub.
1	Streeter V.L., K.W. Bedford and E.B.Wylie, Fluid Mechanics, TMH	2010
2	Robert W. Fox and Alan T. McDonald, Introduction to Fluid Mechanics, John	2009
	Wiley & Sons.	
3	Potter, Mechanics of Fluids, Cengage Learning.	2012
4	Frank M. White, Fluid Mechanics, Tata McGraw Hill.	2003
5	John F. Douglas, Fluid Mechanics, Pearson Education.	2007
6	Munson, B. R., Young, D. F., & Okiishi, T. H. Fundamentals of Fluid	
	Mechanics, Wiley	
7	Som, S. K., & Biswas, G. Introduction to fluid mechanics and fluid machines,	2010
	Tata McGraw Hill.	
8	K.Subramaanya, Hydraulic Machines, McGrawhill,	2013
9	Modi and Seth, Fluid Mechanics and Hydraulic Machinery, Standard Book	1001
	House	1991

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Page 6 Scheme & Syllabus: Production & Industrial Engineering Approved Dean, FA & UD

3PIU6: FOUNDRY AND WELDING TECHNOLOGY

B.Tech. (P&I) 3rd semester 3L+OT

Unit	Contents	Contact Hours
	General Classification and Introduction to Manufacturing processes. Pattern Practice: Introduction, advantage and disadvantages of casting over other manufacturing process, conventional casting procedure, requirement of a good pattern, types of patterns, pattern materials, pattern allowances.	3
I	Moulding Practice: Moulding sands: types, composition, preparation, properties, conditioning and testing - Grain fineness; moisture content, clay content and permeability test.; types of moulds, moulding processes, moulding machines; Cores: Functions of core, type of cores, core print, core box, Gating system: types, pouring basin, sprue, gating ratio, chills, runner and risers; Gating system design and risering design, pouring time.	5
	Casting Practice: Basic rules for good casting design, Foundry equipment and furnaces. Melting, pouring and solidification. relative advantages, disadvantages and applications of casting processes, Sand casting,	3
п	shell-mould casting, plaster-mould casting, ceramic-mould casting, vacuum casting, evaporative pattern casting (lost foam), Investment casting, slush casting, die casting, centrifugal casting, continuous casting.	3
	Welding processes: Introduction, advantages, disadvantages and application	2
,	of welding, Classification of welding process; Types of joints, welding joint, safety feature in welding, weldability, welding symbols, soldering and brazing.	4
ш	Welding electrodes, selection of welding electrodes, flux. Pressure welding: forge welding, resistance electric welding, butt welding, flash welding, spot welding, seam welding, projection welding. Fusion welding: gas welding, electric arc welding, metallic arc welding, carbon arc welding, shielded arc welding, Thermit welding.	4
IV	TIG welding, MIG welding, submerged arc welding, ultrasonic welding, plasma arc welding, laser beam welding, friction welding, cold welding, under water welding.	3
	Thermal cutting of metals, welding of dissimilar metals, welding of plastics, Residual welding stresses, heat treatment of weldments,	5
v	Testing of Castings and Weldments: Causes and remedies for casting defects, welding defects. Destructive testing methods: tensile test, compression test, bend test, impact test, hardness test.	4
	Non destructive testing methods: visual inspection, leak test, x-ray and X-ray radiography, magnetic particle test, liquid penetration test, fluorescent penetration test, ultrasonic test, eddy-current test, allowable defects and quality control of welding as per ASME standard	<u>т</u>
		40

ТЕХ	T BOOK	
1	Rao.P.N., Manufacturing Technology, Vol. 1, Tata McGraw Hill	2013
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Pub.
1	Ghosh, A., & Mallik, A. K. 1986. Manufacturing Science: Ellis Horwood.	1999
2	Schey, Introduction to Manufacturing Processes, Tata McGraw Hill	2000
3	Kalpakjian, S., & Schmid, S. R., Manufacturing processes for engineering	2008
	materials, Pearson Education.	
4	Campbell, J. S. Principles of manufacturing materials and processes: TMH	1999
5	Heine,, Loper, C.R., and Rosenthal, P.C., "Principles of Metal casting", TMH	1976
6	Groover, M.P., Fundamentals of Modern Manufacturing: Materials, Processes	2007
	and systems, Prentice Hall, New Jersey	

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 (Zalala

Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 13

Approved Dean, FA & UD

Page 7

7	Kalpakjian, S. & Schmid S.R, Manufacturing Engineering and Technology,	2000
	Addison Wesley Longman	
8	Little, R.L., Welding and welding technology Tata McGraw-Hill Education	1973
9	Shan, H.S., Manufacturing Process, Pearson Education.	2012
10	Principle of Foundry Technology, P.L.Jain, Tata McGraw Hill, 2003	
11	Modern Welding Technology, B.Curry, Prentice Hall,	2002
12	Welding Principle & applications ,Larry Jeff in Delmar,	1997
13	Foundry Engineering , Taylor HF Fleming, M.C. & Wiley Eastern Ltd.	

3PIU11: PRODUCTION PRACTICE-I

B.Tech. (P&I) 3rd Semester OL+OT+3P

SN	NAME OF EXPERIMENT		
	Machine Shop		
1	To study lathe machine construction and various parts including attachments, lathe tools cutting speed, feed and depth of cut.		
2	To perform step turning, knurling and chamfering on lathe machine as per drawing.		
3	To perform taper turning (a) by tailstock offset method as per drawing (b) Using compound rest.		
4	To prepare the job by eccentric turning on lathe machine.		
5	To study shaper machine, its mechanism and calculate quick return ratio. To prepare a job on shaper from given mild steel rod.		
	Foundry Shop		
6	To prepare mould of a given pattern requiring core and to cast it in aluminum.		
7	To perform moisture test and clay content test.		
8	Strength Test (compressive, Tensile, Shear Transverse etc. in green and dry conditions) and Hardness Test (Mould and Core).		
9	To perform permeability test		
10	A.F.S. Sieve analysis test.		
	Welding Shop		
11	Hands-on practice on spot welding.		
12	Hands-on practice on submerged arc welding		
13	Hands-on practice on metal inert gas welding (MIG) and tungsten inert gas welding (TIG).		

3PIU12: INTRODUCTION TO MECHANICAL ENGINEERING LAB B.Tech. (P&I) 3rd Semester OL+OT+2P

SN	LABORATORY WORK			
	Exposure to a wide range of applications of mechanical engineering through a			
	variety of activities, including hands-on assembly and disassembly of			
	machines, such as, bicycle, sewing machine, pumps, engines, air-conditioners,			
	machine-tools, amongst others; observational study of complex systems via			
	cut sections, visits, videos and computer simulations; design of simple			
	machines/systems including specifications formulation; visits to industries.			
	Note: Student will be required to submit written report indicating the learning			
	achieved by Hands on assembly/Disassembly.			

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering Approved

Page 8

Dean, FA & UD

2017-18 page no.: 14

3PIU13: MATERIAL SCIENCE AND TESTING LAB.

B.Tech.	(P&I)	3rd	Semester
0L+0T+2	2P		

SN	NAME OF EXPERIMENT	
1	(a) Study of various crystals structures through models BCC, FCC, HCP,	
	tetrahedral and octahedral voids.	
	(b) Material identification of, say, 50 common items kept in a box.	
2	Specimen preparation for metallographic examination /micro structural	
	examination-cutting, grinding, polishing, etching.	
3	Comparative study of microstructures of different given specimens (mild steel,	
	gray C.I., brass, copper etc.)	
4	Heat treatment experiments such as annealing, normalizing, quenching, case	
	hardening and comparison of hardness before and after.	
5	Study of Microstructure and hardness of steel at different rates of cooling.	
	Microstructure examination of white cast iron.	
6	To perform Tensile/Compressive/Shear/torsion test on a given material and to	
	determine its various mechanical properties under	
	tensile/compression/Shear/torsional loading	
7	To determine Rockwell/ Vickers/Brinell hardness of a given material	
8	To perform Impact test on a given material and to determine its resilience.	
9	To study and perform Fatigue test on a given material and to determine fatigue	
	strength of the material	
10	To perform Bending test and to determine the Young's Modulus of Elasticity via	
	deflection of beam.	
11	Creep testing on creep testing machine	

REFERENCE BOOKS		
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Vander Voort, Metallography: Principles and Practice, McGraw-Hill	1984
2	Prabhudev K.H., Handbook of Heat Treatment of Steels, Tata McGraw-Hill	2000
3	Suryanarayanan, A.V.K. "Testing of Metalic materials" TataMcGraw Hill	1993

3PIU14: FLUID MECHANICS LAB.

B.Tech. (P&I) 3rd Semester

$0 \mathbf{L}^+ 0$	
SN	NAME OF EXPERIMENT
1	Determination of Meta-centric height of a given body.
2	Determination of Cd, Cv & Cc for given orifice.
3	Calibration of contracted Rectangular Notch and / Triangular Notch and
	determination of flow rate.
4	Determination of velocity of water by Pitot tube.
5	Verification of Bernoulli's theorem.
6	Calibration and flow rate determination using Venturimeter & Orifice meter and
6	Nozzle meter
7	Determination of head loss in given length of pipe.
	Determination of the Reynold's number for laminar, turbulent and transient flow in
8	pipe.
9	Determination of Coefficient for minor losses in pipes.
10	To study the velocity distribution in a pipe and also to compute the discharge by
10	integrating the velocity profile.
11	To study the boundary layer velocity profile over a flat plate and to determine the
11	boundary layer thickness.

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering Approved

Page 9

Dean, FA & UD

2017-18 page no.: 15

4PIU1: ADVANCED ENGINEERING MATHEMATICS -II B.Tech. (P&IE) 4th semester 3L+1T

UNI	T CONTENTS	CONTACT HOURS
	Complex Analysis: Differentiability and Analytic functions, Cauchy- Riemann equations (Cartesian and Polar forms), Harmonic functions. Conformal mapping.	9
	Complex Line integral, M-L inequality, Cauchy theorem, Morera's theorem, Cauchy integral formulae, Taylor series and Laurent series. Singularities and Zeros, residues at poles and infinity, residues at isolated essential singular point, Cauchy residue theorem, evaluation of real definite integrals and improper integrals.	8
	 Special Functions: Legendre's function, Rodrigues formula, generating function, Simple recurrence relations, orthogonal property. Bessel's functions of first and second kind, generating function, simple recurrence relations, orthogonal property. 	8
	Statistics & Probability: Basic concepts of probability, conditional probability, Baye's theorem. Random variable and distributions: Discrete and continuous random variables, Moments, Expectation, Moment generating function, Binomial, Poisson and Normal distribution.	9
TEV	ТТ РООК	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Advanced Engineering Mathematics, Jain and Iyengar, Narosa Publications.	
2	Advanced Engineering Mathematics, Denis Zill and Warren Wright, Jones & Bartlett India Private Limited.	
3	Introduction to Probability and Statistics, Seymour Lipschutz and John J. Schiller, McGraw Hill Education, India.	
4	Advanced Engineering Mathematics, O'neil, Cengage Learning, India.	
REF	ERENCE BOOKS	Vear of
SN	Name of Authors /Books /Publisher	Pub.
1	Advanced Engineering Mathematics, Irvin Kreyszig, Wiley, India.	
2	Advanced Engineering Mathematics, M. Greenberg, Pearson Education,	
3	Advance Engineering Mathematics, Potter, Oxford, India.	
4	Engineering Mathematics, Pal and Bhunia, Oxford, India.	
5	Complex Variables and Applications LW Brown & R.V. Churchill MU	
7	Probability and Statistics Murray Spiegel John Schiller R AluSrinivasan	
	McGraw Hill Education, India.	
8	Engineering Mathematics, Paras Ram, CBS Publisher, India.	

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 16

Page 10 Approved Dean, FA & UD

4PIU2: DESIGN OF MACHINE ELEMENTS – I

B.Tech.	(P&I)	4^{th}	semester
3L+0T			

UNIT	CONTENTS	CONTACT HOURS
I	 Design Criteria: Strength, Stiffness, aesthetics, ergonomics Design for Manufacturing: Design consideration for cast, forged and machined parts. Theories of Elastic Failures: The necessity for a theory, different theories, significance and comparison, applications Design for Assembly: Introduction, Limits, fits and tolerances, Interchangeability, standardization. Materials: Selection of material from properties and economic aspects. Mechanical Properties and IS coding of various materials. 	7
п	Design for Strength : Modes of failure, Allowable stresses, factor of safety. Stress concentration : causes and mitigation.	4
	joints.	5
ш	Design of Members in Bending : Levers and laminated springs. Design for stiffness: Introduction, Specific cases of beam designon the basis ofmaximum deflection.	7
TV	Design of Members in Torsion: Solid and hollow shafts. Shafts under combined loading. Sunk keys.	5
10	Couplings: Design of muff coupling, flanged couplings: rigid and flexible	3
	Design of Threaded fasteners : Bolt of uniform strength, Preloading of bolts: Effect of initial tension and applied loads, Eccentric loading	5
V	Power transmission: Belts and ropes, effect of centrifugal force and creep. Design of flat and Vee belts.	4
	TOTAL	40

TEX	T BOOK	
1	Bhandari, V. B., Introduction to Machine Design, McGraw Hill Education	2013
-	(India)	
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of
-		Pub.
1	Bahl and Goel, Mechanical Machine Design, Standard Publishers	2002
	Distributors	
2	Shigley, Joseph E., Mechanical Engineering Design, McGraw Hill	2002
	Education (India)	
3	Sharma and Aggarwal, Machine Design, S.K.Kataria and Sons, Delhi.	1997
4	Sharma and Purohit, Design of Machine Elements, Prentice Hall India.	2002
5	Jindal U C, Machine Design, Pearson Education India	2010

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 17 Dean, FA & UD

4PIU3: WORK SYSTEM DESIGN AND ERGONOMICS

B.Tech. (P&I) 3rd semester 3L+0T

UNI	CONTENTS	CONTACT HOURS
т	Concept of Productivity, effectiveness and efficiency, work components of manufacturing time and work content, factors tending to reduce productivity, reducing work content and ineffective time.	3
_	Work Study: Objectives of work study - work study procedure human factors in the application of work study-relationship between method study and work measurement.	5
п	Method Study : General principles - basic steps-criteria for selecting work-samples and techniques – data collection-critical evaluation-brain storming and creativity-development of new methods and installation	
	principles of layout of material handling Principles of motion economy-work place layout-examples of method study in plants and offices. Work place and work environment design.	4
	Work Measurement : Introduction to work measurement, purpose-use of work measurement-basic procedure-time study equipment's-selection of jobs to be studied-approach to workers-steps in making a time study-number of cycles to be studied.	5
111	Performance rating and allowances: Rating-use of rating factor- allowances-personal allowance, fatigue allowance-compiling allowed time for a job - examples of time study-synthesis from standard data. Use of work measurement techniques	4
137	Work sampling, Theory; determination of number of observations needed, confidence limits-area of application limitations-systematic work sampling and random work sampling.	5
IV	Ancillary techniques : Pre-determined Motion standards, MTM and work factor-design of work place, design of fixtures and equipment's, standard data, TMU formula, job evaluation and merit rating.	3
v	Ergonomics : The nature of Ergonomics; Ergonomics practice Systems concepts. Human body measurement (Anthropometry).	5
•	Joints, bones, muscles. Layout of equipment. Seat design. Design of controls and compatibility.	3
TEV	TOTAL TOTAL	40
1	Motion and Time Study and Measurement of Work, Ralph, M Barnes, John Wiley and Sons.	2001
REF	ERENCE BOOKS	Voor of
SN	Name of Authors /Books /Publisher	Pub.
1	Human Factors Engineering and Design, M.S.Saunders and E.J. McCormic, McGraw Hill.	1995
2	Introduction to Work Study, George Kanawaty, ILO.	2002
3	Industrial Engineering Handbook , Harold Bright Maynard, Kjell B. Zandin, McGraw-Hill.	1998
4	Work measurement and methods improvement, Lawrence S. Aft, Wiley-IEEE.	2002
5	"Niebel's Methods, Standards, and Work Design", Benjamin W. Niebel, Freivalds Andris, McGraw Hill Education (India).	2008
6	Motion and time study: improving productivity, Marvin Everett Mundel, Prentice-Hall.	2003

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 18
Page 12
Approved Dean, FA & UD

4PIU4: THEORY OF MACHINES

B.Tech. (P&I) 4th semester 3L+OT

UNIT	CONTENTS	CONTACT HOURS
	Introduction to mechanism: Basic concept of machines, links, kinematic pair, kinematic chain and mechanism. Inversions of	
I	mechanisms, inversions of double slider crank mechanisms.	5
	Velocity and acceleration in mechanism: Velocity and acceleration polygons, relative velocity and instantaneous centre method	3
	Friction devices: Types and laws of friction. Pivots and collars. Power screws such as lead screw of the lathe.	4
	Clutches: Single and multi-plate clutches. Brakes: Band, block and band and block brakes.	4
III	Gears: Laws of gearing, gears terminology; tooth form; interference, undercutting and minimum number of teeth on pinion. Rack and pinion, Spur, helical, basic introduction of bevel, worm and worm	
	Gear Trains: Simple, compound and epicyclic gear trains.	3
137	Cams: Type of cams; displacement, velocity and acceleration curves for different cam followers; consideration of pressure angle and wear.	4
	Gyroscope: Principles of gyroscopic couple, effect of gyroscopic couple and centrifugal force on vehicles taking a turn, stabilization of ship.	4
v	Balancing: Balancing of rotating masses in same and different planes,	
v	tractive effort.	7
	TOTAL	40

ТЕХ	KT BOOK	1
1	Rattan, S.S., "Theory of Machines", 2nd Ed., Tata McGraw Hill	2006
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Bevan, T., "Theory of Machines", Pearson Education.	2013
2	Uicker, J.J., Pennocle, G.R, and Shigley, J.E, "Theory of Machines and	2009
	Mechanisms", 3rd Ed., Oxford University Press.	
3	Ambekar , A. G., "Mechanism And Machine Theory", Prentice-hall Of	2007
	India	
4	Ghosh, A., "Theory of Mechanisms and Machines", Affiliated East West	
	Press.	
5	Singh, S., "Theory of Machines", Pearson Education	2013
6	Stanisic., "Mechanisms and Machines-Kinematics, Dynamics &	2014
	Synthesis", Cengage leasrning	

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 19
Page 13 Approved Dean, FA & UD

4PIU5: MACHINING SCIENCES

B.Tech. (P&I) 4th semester 3L+OT

UNIT	CONTENTS	CONTACT HOURS
I	Classification of metal removal process and Classification of machine tools, Geometry of single point cutting tool and tool angles, tool nomenclature in ASA and ORS. Concept of orthogonal and oblique cutting.	5
п	Chip Formation, Mechanics of metal cutting, shear angle and its relevance, various theories of metal cutting. Thermal aspects of machining and measurement of chip tool interface temperature. machinability, tool wear, tool life, Cutting fluids, Economics of machining, Measurement of cutting forces.	2
III	Lathe: Construction and cutting speed, feed, and depth of cut, machining time and power estimation. Capstan and turret lathe machines, tool layout. Shaper: Construction and working principle, Quick return mechanism. Milling: Introduction, types of milling machines, milling cutters, milling operations, dividing head, Indexing methods, machining time and power estimation and gear cutting.	4
IV	Gear hobbing, gear shaping. Gear finishing processes: shaving, grinding, lapping and shot blasting	
	Drilling: - tool geometry of twist drills, types of drills, drilling machine construction, drilling time and force estimation	5
v	Grinding- Need and different methods of grinding, grinding wheel designation and selection, Dressing and truing, Types of grinding machines, Grinding process. Honing, lapping, super finishing, polishing and buffing processes.	4

TEX	T BOOK	
1	Lal G.K., Introduction to Machining Science, New Age international Publishers.	2007
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Pub.
1	Rao.P.N., Manufacturing Technology, Vol. 1,2 and 3, Tata McGraw Hill	2013
2	Ghosh, A., & Mallik, A. K Manufacturing Science: East West Press Private	1986
	Limited.	
3	Schey, Introduction to Manufacturing Processes, Tata McGraw Hill	2000
4	Kalpakjian, S., & Schmid, S. R., Manufacturing processes for engineering	2008
_	materials, Pearson Education.	1000
5	Pandey & Singh, Production Engineering Science, Standard Publishers	1999
	Distributer, Delhi.	2007
6	Stephenson, D. A., & Agapiou, J. S. Metal cutting theory and practice: CRC	2006
-	laylor & Francis.	4070
7	Karl H.Heller, All About Machine Tools, Wiley Eastern Ltd., New Delhi	1972
8	Kalpakjian, S. & Schmid S.R, Manufacturing Engineering and Technology, Addison Wesley Pub. Co.	2000
9	Sen G C & Bhattacharyva A Principles of Machine Tools: New Central Book	1988
-	Agency	
10	Bhattacharyya A. Theory & Practice of Metal Cutting, New Central Book	2006
	Agency	
11	Shan, H.S., Manufacturing Process, Pearson Education.	2012
12	Boothroyd, G., & Knight, W. A. Fundamentals of machining and machine	2006
	tools: Taylor and Francis.	
13	Milton C. Shaw, Metal Cutting Principles, CBS Publishers.	2005
14	Trent, E. M. Metal cutting: Butterworth Heinemann	2000

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 20
Page 14 Approved Dean, FA & UD

4PIU6: INDUSTRIAL MANAGEMENT

B.Tech.	(P&I)	4^{th}	Semester
3L+OT			

Unit	Contents	Contact Hours
I	Management: Definition including conceptual analysis, functions. Evolution of management thought, scientific management, contributions of Taylor, Gilbert, Gantt, Elton Mayo, Henry Fayol and others.	5
	Management process & systems approach to Management, functions of managers. Levels of management, Administration & Mnmgt. Decision making.	3
	Forms of ownership: Proprietorship, partnership, joint stock company, private and public limited companies, Joint Stock Companies: Co -operative Society, choice of business forms and state undertakings. Multinational corporations.	4
	Management Planning: Managerial planning, Type of plans, steps in planning; mission, objectives, strategies, policies, procedures, rules and programs. Managing by objectives, strategic planning process, SWOT analysis.	4
ш	Organizing: Meaning of organizing and organization, formal and informal organization, span of management, process of organizing. Organizational structure: Line organization, functional organization, matrix organization, strategic business units. Line/Staff concepts, empowerment, and decontralization delegation of outbority.	E
	Effective organizing and organizational culture. Staffing: overview, factors affecting staffing, systems approach, job design, selection, Performance appraisal, rewards. Career strategy, managerial training. Managing change.	4
IV	Human factors in managing Motivation : Theory X, Theory Y, Maslow's hierarchy of needs, Hertzberg's hygiene theory, porter and Lawler model, equity theory, Reinforcement theory, McClelland's theory behavioral model.	5
	Motivational techniques, job enrichment. Leadership: traits, approaches situational, contingency, path goal approach, transactional and transformational leadership.	3
	Group decision making: Reasons for using Committees and groups, successful operation of committees and groups, working in teams. Communication: purpose, process of communication, communication flow in	
v	the organization, barriers to communication, Improvement of communication; role of electronic media in communication.	5
	Controlling: Basic control process, feed forward and feedback control, performance measures and control, requirement of effective control, use of Information Technology for control.	3

TEX	T BOOK	
1	Essentials of Managements an Introduction, Koontz, Tata McGraw-Hill, New	2002
L	Delhi.	
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Pub.
1	Fundamentals of Managements, Robbins, Pearson Education	1995
2	Works Organisation and Management, Basu and Sahu, IBH	2005
3	Industrial Organisation and Management, Bethel, Atwater, Smith &Stachmax,	2010
	McGraw Hill	
4	Principles of Industrial Organization, Kimbal and Kimbal, McGraw Hill	2008
5	Principles of Industrial Management, Leon Pratt Alford, Henry Russell Beatty,	2001
	Revised Edition, Ronald Press Co.	
6	Works Organisation & Mgt, SK Basu, K. C. Sahu, N. K. Datta , Oxford & IBH.	1992
7	Management, Griffin, John Wiley and Sons.	2002
8	Management: Tasks, Responsibilities & Practices, Drucker P. F., Allied Pub.	1995
8	Raju, Industrial Engg and Management, Cengage learning	2015

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Page 15 Scheme & Syllabus: Production & Industrial Engineering Approved Dean, FA & UD

4PIU11: PRODUCTION PRACTICE - II

B.Tech. (P&I) 4th semester 0L+0T +3P

UNIT	NAME OF EXPERIMENT
1	To study of single point cutting tool geometry and to grind the tool as per given tool
L	geometry.
2	To study the milling machine, milling cutters, indexing heads and indexing
4	methods and to prepare a gear on milling machine.
3	To machine a hexagonal / octagonal nut using indexing head on milling machine.
4	To cut BSW/Metric internal threads on lathe machine.
5	To cut multi-start Square/Metric threads on lathe machine.
	Boring using a boring bar in a centre lathe.
6	Study of capstan lathe and its tooling and prepare a tool layout & job as per given
0	drawing.
7	Demonstration on milling machine for generation of plane surfaces and use of end
1	milling cutters.
8	Grinding of milling cutters and drills.
9	Exercise on cylindrical and surface grinders to machine surfaces as per drawing.
10	Cylindrical grinding using grinding attachment in a centre lathe

4PIU12: PRODUCTION ENGINEERING DRAWING

B.Tech. (P&I) 4thSemester 0L+0T+3P

SN	CONTENTS					
	Review of sectioning, Review of BIS Standard (SP 46), Fasteners - screws, bolts					
	and nuts, riveted joints, pins, locking devices, welded joints, pipe joints, unions					
	and valves. Assemblies involving machine elements like shafts, couplings,					
	bearing, pulleys, gears, belts, brackets. Tool drawings including jigs and fixtures.					
	Engine mechanisms-assembly and disassembly. Production drawings - limits, fits					
	and tolerances, dimensional and geometric tolerances, surface initish symbols.					
	drawings. Schematics, process and instrumentation diagrams, piping					
	Computer sided design and use of software packages for engineering drawings					
	Assembly Drawing with sectioning and hill of materials					
	Universal Coupling Forming punch and die Jigs for inspecting shaft etc. (1					
	drawing sheet of any assembly) Lathe tail stock, shaper tool head, steam stop					
	valve, feed check-valve, swivel machine vice etc (1 drawing sheet of any assembly)					
	Detailed part drawings from assembly drawing indicating fits, tolerances and					
	surface finish symbols by referring BIS codes (1 drawing sheet) Check-valve,					
	Junction Valve etc.					
	Computer Aided Drafting (4 drawings)					
	Introduction, input, output devices, introduction to software like AutoCAD/ProE/					
	Creo/Solidworks, basic commands and development of 2D and 3D drawings of					
	simple parts					
	Free Hand Sketches: Connecting rod, crank shaft, Pipes and Pipe fittings,					
	drive aliding geer her affety value three way stop value blow off cook. Swivel					
	bearing Turret Tool Post drill-press vice screw jack					
тез	T BOOK					
1	Laxminarayan and M.L. Mathur, Machine Drawing Jain Brothers					
RE	FERENCE BOOKS					
SN	Name of Authors /Books /Publisher					
1	Gill P S, Machine Drawing, Kataria & Sons					
2	Basudeb Bhattacharya, Machine Drawing, Oxford University Press					
4	Ostrowsky, O., Engineering Drawing with CAD Applications, ELBS					
5	Siddeshswar N., P Kannaiah, VVS Shastry, Machine Drawing, Tata McGraw Hill					

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19

Approved

4PIU13: THEORY OF MACHINES LAB.

B.Tech. (P&I) 4th Semester OL+OT+2P

SN	NAME OF EXPERIMENT
1	To study inversions of four bar chain and slider crank mechanism and their
-	practical applications.
2	To study Steering Mechanisms: Davis and Ackerman.
3	Study of quick return mechanism and its practical applications.
4	Study of inversion of Double slider chain: Oldham Coupling, Scotch Yoke and
4	Elliptical Trammel.
e	Study of various cam-follower arrangements. To plot displacement v/s angle of
0	rotation curve for various cams
7	To determine co-efficient of friction using two roller oscillating arrangement.
8	Study of various types of dynamometers, Brakes and Clutches.
9	Study of differential gear box.
13	To verify the torque relation for gyroscope.
16	To perform wheel balancing. To perform static and dynamic balancing on balancing
10	set up.
19	Study of a lathe gear box, sliding mesh automobile gear box, planetary gear box.

4PIU14: WORK SYSTEM DESIGN LAB

B.Te	ch. (P&I) 4 th Semester				
0L+0	T+2P				
SN	LABORATORY WORK				
1	Rating: To obtain practice in rating operators' performance in Card Dealing and				
	Walking.				
2	Man Machine Chart				
	a) Prepare man machine chart for drilling two holes in a plate 10 mm thick on a				
	radial drilling machine.				
	b) To determine standard time for drilling a hole in mild steel workpiece by				
	stopwatch method.				
3	Two handed Process Chart				
	a) To draw two handed process chart for bulb holder assembly and to suggest a				
	satisfactory layout.				
	b) To find out standard time for assembly.				
4	Left - Hand and Right - Hand Operation Chart				
	a) To make left hand and right hand operation chart for bolts and washer assembly.				
	b) Draw work place layout using principles of motion economy.				
5	Pin Board Experiment				
6	To practice various Graphic tools for method study				
	To study with reference to the bulb holder assembly operation the following aspects :				
	(i) Learning effect (ii) Sequence of operation (iii) Preparation of 2-H process chart and				
	computing cycle time.				
7	To determine the normal working area, max. working area, height for a normal man				
	(i) for the assembly of pins in a box (ii) For the assembly of Nuts, bolts and washers.				
8	Work sampling Practice				
9	MTM practice				
10	To study the operator's performance under different working conditions (light,				
	temperature, sound, atmosphere etc.)				

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19

 Scheme & Syllabus: Production & Industrial Engineering
 Approved

 2017-18
 page no.: 23

Page 17

 Page 17

Page 17

5PIU1: THERMAL ENGINEERING

B.Tech. (P&IE) 5th semester

3L+1T

Unit	Contents	Contact hours
	Heat Transfer : Introduction, Fourier's law of conduction, Newton Rikhman equation, Stefan Boltzmann law, Overall heat transfer coefficient.	2
I	Conduction: Three dimensional heat flow equation-Cartesian coordinates. One dimensional steady state conduction without heat generation, One dimensional flow through a plane wall, composite wall and tube, thick spherical shell, Critical insulation, Heat flow through fins.	6
	Convection : Dimensional analysis of forced and free convection, empirical relations.	5
	Radiation: Introduction, Absorption, reflection and transmission, Monochromatic, total emissive power, view factor	3
III	Heat exchanger : Types of Heat Exchanger, LMTD equation for parallel and counter flow Heat Exchanger and its applications. Effectiveness - NTU Method	8
IV	Refrigeration: Air refrigeration system, vapour compression and vapour absorption system, steam refrigeration	4
	Refrigerants, Refrigeration equipments, Reciprocating Air Compressor.	4
v	Air Conditioning : Properties of moist air, Psychrometric chart and its use, Elementary psychrometric processes. Comfort Air Conditioning.	8
	TOTAL	40

TEX	KT BOOK	
1	J.P. Halman, Heat Transfer, Mc Graw Hill	
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Incropera and Dewitt, Fundamental of Heat and Mass transfer, J. Wiley	2007
2	Cengel, Heat and Mass transfer, Mc Graw Hill	2011
3	M.Thirumaleshwar, Fundamental of Heat and Mass Transfer, Pearson Ed.	2006
4	Ozisik, Heat and Mass Transfer, Mc Graw Hill	2009
5	C.P. Arora, Refrigeration and Air Conditioning, Tata McGraw Hill.	2008

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 24
Page 18
Approved Dean, FA & UD

5PIU2: DESIGN OF MACHINE ELEMENTS- II

B.Tech.	(P&	I)	5^{th}	Semester
3L+0T				

Unit	Contents	Contact hours
	Fatigue Considerations in Design: Variable load, loading pattern, endurance stresses, Influence of size, surface finish, notch sensitivity and stress concentration.	3
I	Goodman line, Soderberg line, Design of machine members subjected to combined, steady and alternating stresses.	3
	Design for finite life, Design of Shafts under Variable Stresses, Bolts subjected to variable stresses.	2
II	Design of IC Engine components: Piston, Cylinder, Connecting Rod and Crank Shaft.	8
III	Design of helical compression, tension, torsional springs, springs under variable stresses.	4
	Design of belt, rope and pulley drive system,	4
	Design of gear teeth: Lewis and Buckingham equations, wear and dynamic load considerations.	4
IV	Design and force analysis of spur, helical, bevel and worm gears, Bearing reactions due to gear tooth forces.	4
v	Design of Sliding and Journal Bearing: Methods of lubrication, hydrodynamic, hydrostatic, boundary etc. Minimum film thickness and thermal equilibrium.	4
	Selection of anti-friction bearings for different loads and load cycles, Mounting of the bearings, Method of lubrication.	4
	TOTAL	40

TEX	KT BOOK	
1	Design of Machine Elements, Bhandari V.B, 3rd Ed., Tata McGraw-Hill, New	2010
	Delhi	
REF	TERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Machine Design, Sharma and Aggarwal, Kataria and Sons, Delhi.	1997
2	Mechanical Engg Design, Shigley, Mischke, Budynas and Nisbett, Tata	2002
	McGraw-Hill	
3	PSG Design Data Book, P.S.G. College of Technology, Coimbatore.	1966
4	A Text Book of Machine Design, Karwa A., Laxmi Publication.	2002
5	Machine Design, Hall, Holwenko and Laughlin, Schaum's Outlines Series,	
	Tata McGraw Hill.	

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Page 19 Scheme & Syllabus: Production & Industrial Engineering Approved 2017-18 page no.: 25 Dean, FA & UD

5PIU3: QUALITY CONTROL AND RELIABILITY ENGINEERING B.Tech. (P&IE) 5thsemester 3L+OT

Unit	Contents	Contact hours
	The meaning of Quality and quality improvement, dimensions of quality, history of quality methodology, quality control, Quality of design and quality of conformance, Quality policy and objectives, Economics of quality.	5
I	Modeling process quality: Describing variation, frequency distribution, continuous and discrete, probability distributions, pattern of variation, Inferences about process quality: sampling distributions and estimation of process parameters. Analysis of variance.	4
п	Statistical Quality Control: Concept of SQC, Chance and assignable causes of variation, statistical basis of control chart, basic principles, choice of control limits, sample size and sampling frequency, analysis of patterns on control charts. The magnificent seven.	4
	Control chart for variables,: X-bar and R charts, X-bar and S charts, control chart for individual measurement. Application of variable control charts.	4
ш	Control chart for attributes: control chart for fraction non conforming P- chart, np-chart, c-chart and u-chart. Demerit systems, choice between attribute and variable control chart. SPC for short production runs. Process capability analysis using histogram and probability plot, capability ratios and concept of six sigma.	7
	Quality Assurance: Concept, advantages, field complaints, quality rating, quality audit.	2
IV	and multiple sampling plans, LTPD, AOQL, AOQ.	4
	Introduction to Quality systems like ISO 9000 and ISO 14000.	2
v	Reliability and Life Testing- Failure models of components, definition of reliability, MTBF, Failure rate, common failure rate curve, types of failure, reliability evaluation in simple cases of exponential failures in series, paralleled and series-parallel device configurations, Redundancy and improvement factors evaluations. Introduction to Availability and	8
	Maintainability	40
1	TOTAL	40

ТЕХ	IT BOOK	
1	Introduction to Statistical Quality Control, Douglas C. Montgomery, 2nd Edition, Wiley.	1991
2	Charles E. Ebeling, An introduction to reliability and maintainability engineering, Tata McGraw-Hill Education.	2004
REF	ERENCE BOOKS	
		Vear of
SN	Name of Authors /Books /Publisher	Pub.
SN 1	Name of Authors /Books /Publisher Quality Planning and Analysis, J.M.Juran and F.M. Gryna, McGraw Hill	Pub. 2002
SN 1 2	Name of Authors /Books /Publisher Quality Planning and Analysis, J.M.Juran and F.M. Gryna, McGraw Hill Quality Control, Dale H. Besterfield, 8th Edition, Pearson/Prentice Hall	Pub. 2002 2008
SN 1 2 3	Name of Authors /Books /PublisherQuality Planning and Analysis, J.M.Juran and F.M. Gryna, McGraw HillQuality Control, Dale H. Besterfield, 8th Edition, Pearson/Prentice HallStatistical Quality Control, E. L. Grant and Richard S. Leavenworth, TMH	Pub. 2002 2008 2000

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering Approved 2017-18 page no.: 26 Dean, FA & UD

Page 20

PIU4: MEASUREMENT & METROLOGY

B.Tech. (P&IE) 5th semester 3L+0T

UNIT	CONTENTS	CONTACT HOURS
	Concept of measurement: General concept of measurement, Need for measurement, Generalized measuring system, Units, Standards, Sensitivity, Readability, Range of accuracy, Precision, Accuracy Vs	
-	precision, Uncertainty. Repeatability and reproducibility, Errors in measurement, Types of error, Systematic and random error, Calibration, Interchangeability.	4
	Linear and angular measurements: Linear measuring instruments: Vernier caliper, Micrometer, Slip gauges, Optical flat, Application of limit gauges;	3
п	Comparators :- Mechanical comparators, Electrical comparator, Pneumatic comparator;	2
	Sine bar, Use of sine bar, Limitations of sine bars, Sources of error in sine bars, Bevel protractor, Applications of bevel protractor.	4
	Form measurement: Introduction, Screw thread measurement, Thread gauges, Measurement of gears: Gear errors, Spur gear measurement, Parkinson gear tester.	4
	Surface finish measurement:-Introduction, Elements of surface texture, Analysis of surface finish, Methods of measuring surface finish, Straightness measurement, Flatness testing, Roundness measurements	4
IV	Machine tool metrology :Coordinate measuring machine (CMM):-Types of CMM, Features of CMM,Computer based inspection, Computer aided inspection using robots.	5
	Measurement of force : Accelerometer, Load cells. Torque measurement: Torque measurement using strain gauges, Torque measurement using torsion bars,	
v	Measurement of power: Mechanical dynamometers, Measurement of flow: Variable area meters - rotameter. Hot wire	4
	anemometer, Pitot tube. Temperature measurement : Thermocouples (Thermo electric effects), Thermistors, Pyrometers	4
	TOTAL	40

TEX	T BOOK	
1	G.K. Vijayaraghavan & R. Rajappan, Engineering Metrology and Measurements, A.R.S. Publications, Chennai, Fourth Edition June	2009
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Mechanical Measurements , Beckwith T.G. , N.L. Buck, and R.D.	
	Marangoni , Addison Wesley	
2	Dimensional Metrology . Khare & Vajpayee, Oxford & IBH	
3	Engineering Metrology, Jain R.K., Khanna Publishers	
4	Metrology & Precision Engineering, Scarr, McGraw Hill	
5	Handbook of Industrial Metrology, ASTME	

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 27
Page 21
Approved Dean, FA & UD

5PIU5.1: PRINCIPLES OF MACHINE TOOLS

B.Tech. (P&IE) 5th semester 3L+OT

UNIT	CONTENTS	CONTACT HOURS
	Machine tools:- Concept and definition of machining and machine tools. Concept of producing geometrical surfaces by generatrix and directrix.	5
I	Type of Machine tools, General requirements of machine tool design, Workinng and auxiliary motions in machine tools, Parameter defining working motion of machine tool.	3
	Machine drives: Mechanical transmission, Hydraulic transmission, Electrical circuits.	2
п	Stepped regulation of speed: Design of speed box. Design of machine tool structures, Basic principles of design for strength, Basic principles of design for rigidity.	2
	Introduction to design of lathe beds	4
III	Introduction to guides and slideways: Types of slideways, Design of slideways, Shapes of slideways, Application of slideway Profiles and their combination, Material of slideways, Type of connecting sections and their applications, Clearance adjustment in slides. Anti-friction guideways.	8
IV	Machine tool spindles and spindle bearings, Kinematic systems and operations of lathes, Kinematic systems and operations of drilling machine, Kinematic systems and operations of milling machine.	8
v	Construction, working principle and applications of shaping, planing and slotting machines	4
	Alignment & Acceptance test of lathe, milling, drilling machines	4
	TOTAL	40

TEX	KT BOOK	
1	Machine tool design by N K Mehta	2007
2	Principle of machine tools by G C Sen & Bhattacharya	
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Rao.P.N., Manufacturing Technology, Vol. 1,2 and 3, Tata McGraw Hill	2013
2	Ghosh, A., & Mallik, A. K Manufacturing Science: East West Press Private Limited.	1986
3	Schey, Introduction to Manufacturing Processes, Tata McGraw Hill	2000
4	Kalpakjian, S., & Schmid, S. R., Manufacturing processes for engineering materials, Pearson Education.	2008
5	Pandey & Singh, Production Engineering Science, Standard Publishers Distributer, Delhi.	1999
6	Stephenson, D. A., & Agapiou, J. S. Metal cutting theory and practice: CRC Taylor & Francis.	2006
7	Karl H.Heller, All About Machine Tools, Wiley Eastern Ltd., New Delhi	1972
8	Kalpakjian, S. & Schmid S.R, Manufacturing Engineering and Technology, Addison Wesley Pub. Co.	2000
9	Sen, G. C., & Bhattacharyya, A. Principles of Machine Tools: New Central Book Agency	1988
10	Bhattacharyya A, Theory & Practice of Metal Cutting, New Central Book Agency	2006
11	Shan, H.S., Manufacturing Process, Pearson Education.	2012
12	Boothroyd, G., & Knight, W. A. Fundamentals of machining and machine tools: Taylor and Francis.	2006
13	Milton C. Shaw, Metal Cutting Principles, CBS Publishers.	2005
14	Trent, E. M. Metal cutting: Butterworth Heinemann	2000

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Page 22 Scheme & Syllabus: Production & Industrial Engineering Approved 2017-18 page no.: 28 Dean, FA & UD

5PIU5.2: RENEWABLE ENERGY SYSTEMS

B.Tech.	(P&I)	5^{th}	semester
3L+1T			

Unit	CONTENTS	Contact Hours
I	Global and National scenarios, Form and characteristics of renewable energy sources.	
	Solar Energy: Solar radiation, its measurements and prediction, Solar thermal collectors, flat plate collectors, concentrating collectors, Basic theory of flat plate collectors, solar heating of buildings, solar still, solar water heaters, solar driers, conversion of heat energy in to mechanical energy, solar thermal power generation systems.	2
	Solar Photovoltaic: Principle of photovoltaic conversion of solar energy, types of solar cells and fabrication, Photovoltaic applications: battery charger, domestic lighting, street lighting, water pumping, power generation schemes	3
II	Wind Energy: Atmospheric circulations, classification, factors influencing wind, wind shear, turbulence, wind speed monitoring, Betz limit, WECS-classification, characteristics, applications.	3
III	Ocean Energy: Ocean energy resources, ocean energy routes, Principles of ocean thermal energy conversion systems, ocean thermal power plants, Principles of ocean wave energy conversion and tidal energy conversion.	4
IV	Other Sources: Nuclear fission and fusion, Geothermal energy- Origin, types of geothermal energy sites, site selection, geothermal power plants, Magneto-hydro-dynamic (MHD) energy conversion, Formation of biomass, photosynthesis, Biomass resources and their classification, Chemical constituents and physicochemical characteristics of biomass, Biomass conversion processes.	5
v	Fuel Cells: Thermodynamics and electrochemical principles, Basic design, types, applications.	
	Hydrogen Energy: Economics of hydrogen, Production methods.	5
	TOTAL	40

TEXT BOOK		
1	Power Generation through Renewable Source of Energy, Rai and	2004
L	Ram Prasad, Tata McGraw-Hill, New Delhi.	2004
RE	FERENCE BOOKS	
SN	Name of Authors / Books / Publisher	Pub
SI	Name of Authors / Books / Publisher	
2	Renewable Energy Sources and Conversion Technology, Bansal, Kleemann	2013
	and Meliss, TMH	
3	Solar Energy: Fundamental and Applications, H. P. Garg J Prakash,	2006
	TataMcGraw-Hill	
4	Solar Energy: Principles of Thermal Collection and Storage, S P	1994
	Sukhatme, TMH	

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Page 23
Scheme & Syllabus: Production & Industrial Engineering Approved
2017-18 page no.: 29 Dean, FA & UD

5PIU5.3: ADVANCED WELDING TECHNOLOGY

B.Tech. (P&I) 5th semester

|--|

UNIT	CONTENTS	CONTACT HOURS
I	Welding: Introduction, Classification, Advantages and disadvantages of welding and Selection of power sources: Constant voltage and constant current power sources. Heat Transfer and associated losses. Metal Transfer:Mechanism and types of metal transfer in various arc welding processes.	8
п	Solid state welding: Classification of solid state welding processes, advantages, and applications. Ultrasonic welding Process and Explosive Welding.	7
III	Friction welding: Friction welding process variables, welding of similar and dissimilar materials, Defective analysis of friction welded components, Friction welding of materials with inter layer. Friction stir welding: Processes parameters, tool geometry, welding of similar and dissimilar materials, Friction stir welding of Aluminum alloys and Magnesium alloys. Introduction of Hybrid FSW.	8
IV	EBW and LBW: Electron Beam welding process parameters, atmospheric affect Defective analysis of Electron beam welds and Electron Beam welding dissimilar materials. Laser Beam welding process parameters, atmospheric affects in LBM and Laser Beam welding of steels.	8
v	Weldability: Weldability studies of cast iron and steel, Effects of alloying elements on weld ability, welding of plain carbon steel, Cast Iron and Aluminum. Micro & Macro structures in welding. Welding defects and inspection methods.	7
	TOTAL	40

TEXT BOOK		
1	Nadkarni S.V., Modern Welding Technology, Oxford IBH Publishers, 1996.	2009
REF	ERENCE BOOKS	
SN	SN Name of Authors /Books /Publisher	
1	D. L. Olson, T. A. Siewert, <i>Metal Hand Book, Vol 06, Welding, Brazing and Soldering</i> , ASM International Hand book Metals Park, Ohio USA, 2008.	2012
2	Howard B. Cary, Scott Helzer, Modern Welding Technology Paperback, Pearson Edu.	2004
3	K. S. Yadav, Advanced Welding Technology, Standard Book House	2018

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering Approved

2017-18 page no.: 30

5PIU6.1: CNC MACHINES AND PROGRAMMING

B.Tech. (P&IE) 5th semester 3L+0T

UNIT	CONTENTS	CONTACT HOURS
I	Introduction: Definition of NC, Applications of NC ,Historical Developments in Automation,Classification of NC Systems,Comparison of NC and Conventional Machines,Advantages of NC	8
II	NC Hardware: Architecture of NC Systems, Design Considerations, Mechanical Elements, Structure, Guideways and Slides, Guideway Elements, Transmission Systems, Spindle Unit, Coolant system, Lubrication System, Tool and work Changing Mechanisms, Electrical Elements, Drives, Sensors, Control Loops, Computing Elements/ Firmware, Interpolators	8
ш	NC Software: Introduction, Manual Part Programming, Computer- Assisted Part Programming, Language Based , Geometric Modeling Based, Automatic Part Program Generation,	8
IV	CAPP Systems, 5 Axis Programming, Post-Processing, Programming Robots and CMMs	4
	NC Simulation, Kinematic simulation, Volumetric simulation, Applications of Volumetric NC Simulation, Verification	4
v	Advanced Topics:, Adaptive Control, Off-line adaptive control, Various optimisation criteria, Hardware Based AC, Software Based AC, Tooling and Instruments for NC Special Considerations in High Speed Cutting (HSC) and Die Sinking, Rapid Product Development, CAM, FMS, CIM	8
	TOTAL	40

TEXT BOOK		
1	Krar S. and Gill A., CNC: Technology and Programming, McGraw Hill	1990
REI	FERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Koren Y., Computer Control of Manufacturing Systems, Tata McGraw Hill.	1983
2	Pressman R.S. and Williams J.E., Numerical Control and Computer-Aided Manufacturing, John Wiley & Sons	1977,
3	Jones B.L.,Introduction to Computer Numerical Control, John Wiley & Sons.	1986
4	Kral I.H., , Numerical Control Programming in APT, Prentice-Hall	1986
5	Chang C.H. and Melkanoff M.A., ,NC Machine Programming and Software Design, Prentice-Hall	1986

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 31
Page 25
Approved
Dean, FA & UD

5PIU6.2: MANAGEMENT INFORMATION SYSTEM B.Tech. (P&I) 5th semester

3L+OT

UNIT	CONTENTS	CONTACT HOURS
I	Organisation & Types, Decision Making, Data & information,	
	Characteristics & Classification of information,	3
	Cost & value of information, Various channels of information & MIS.	2
	Foundation of Information System : Introduction to Information System	
	in Business Fundamentals of Information System, Solving Business	
II	Problems with Information System,	4
	Concept of Balanced MIS, Effectiveness & Efficiency Criteria. Tool and	
	Techniques of MIS- dataflow diagram, flow chart etc.	4
	Business application of information technology, electronic commerce,	
	Internet, Intranet, Extranet & Enterprise Solutions, Information	
III	System for Business Operations,	5
	Information system for managerial Decision Support, Information	
	System for Strategic Advantage	5
	Managing Information Technology, Enterprise & Global Management,	
IV	Security & Ethical Challenges, Planning & Implementing Change	4
	Reports: Various types of MIS reports, GUI & Other Presentation tools	4
	Advanced concepts in information system: Enterprise Resource	
v	Planning: introduction, various modules like Human Resources,	
	Finance, Accounting, Production & Logistics.	5
	Supply Chain Management, CRM, Procurement Management System	
	Object Oriented modeling case studies.	4
	TOTAL	40

TEXT BOOK		
1	Information systems for Modern Management, G.R.Murdick, Prentice Hall	
1	of India	
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Management Information systems, S.Sadagopan, Prentice Hall of India	
2	Management Information Systems, Effy Oz, Cengage Learning	
3	Management Information Systems, James A O Brien, Irwin McGraw Hill	
4	Management Information Systems, Laudon and Laudon, Prentice Hall of	
	India	

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Page 26 Scheme & Syllabus: Production & Industrial Engineering Approved 2017-18 page no.: 32 Dean, FA & UD

5PIU6.3: STATISTICS FOR DECISION MAKING

B.Tech. (P&IE) 5th semester 3L+OT

Unit	Contents	Contact Hours
	Introduction - Statistical Terminology: Descriptive statistics or exploratory	, incurs
	data analysis, inferential statistics, population, sample, variable, parameter,	,
	statistic, random sample.	3
т	Collecting Data: Historical data, types of studies (comparative, descriptive of noncomparative, observational, experimental) sample surveys, sampling and	
	nonsampling errors higs representative sample judgment sampling quota	
	sampling, simple random samples, sampling rate, sampling frame, stratified	
	random sampling, multistage cluster sampling, probability-proportional-to-	
	size sampling, systematic sampling.	4
	Summarizing and Exploring Data: Variable types (categorical, qualitative,	,
	nominal, ordinal, numerical, continuous, discrete, interval, ratio),	,
	summarizing categorical data (frequency table, bar chart, Pareto chart, pie	k -
	chart), summarizing numerical data (mean, median), skewness, outliers,	,
	intersultile range coefficient of variation, standard deviation,	1
	bivariate numerical data (scatter plot simple correlation coefficient sample	2 •
II	covariance), straight line regression, summarizing time-series data, data	1
	smoothing, forecasting techniques.	4
	Basic Concepts of Inference: Estimation, hypothesis testing, point estimation,	,
	confidence interval estimation, estimator, estimate, bias and variance of	i i
	estimator, mean square error, precision and standard error, confidence level	Ĺ
	and limits, null and alternative hypothesis, type I and II error, probabilities of	
	type I and II error, acceptance sampling, simple and composite hypothesis, P-	
	Value, one-shoed and two -shoed tests.	-
	confidence intervals for the mean, test for the mean, sample size	4
	determination for the z-interval, one-sided and two -sided z-test, inference for	4
	the mean (small samples), t distribution.	
III	Inference for Two Samples: Independent sample design, matched pair design,	,
	pros and cons of each design, side by side box plots, comparing means of two)
	populations, large sample confidence interval for the difference of two means,	,
	large sample test of hypothesis for the difference of two means, inference for	
	Inference for Proportions and Count Data: Large sample confidence interval for	4
	proportion, sample size determination for a confidence interval for proportion.	3
IV	Large sample hypothesis test on proportion, comparing two proportions in the	
	independent sample design (confidence interval and test of hypothesis), chi-	
	square statistic	4
	Simple Linear Regression and Correlation: Dependent and independent	
	variables, probability model for simple linear regression, least squares fit,	,
v	goodness of fit of the LS line, sums of squares, analysis of variance, prediction	
	Multiple Linear Regression: Probability model for multiple linear regression.	
	least squares fit sums of squares Use Excel R and MATLAR® in the class	4
	TOTAL	40
L	101112	

TEXT BOOK		
1	Ajit Tamhane and Dorothy Dunlop "Statistics and Data Analysis: From	1000
	Elementary to Intermediate" Prentice Hall	1999
REFERENCE BOOKS		
SN	Name of Authors /Books /Publisher	Pub.
1	Richard Levin, David S. Rubin, Statistics for Managements, PHI	1988
2	J. K. Sharma, Statistics for Management, Pearson Education India	2001

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 33
Page 27 Approved Dean, FA & UD

5PIU11: THERMAL ENGINEERING LAB

B.Tech. (P&IE) 5th Semester OL+OT+3P

SN	NAME OF EXPERIMENT
	Comparative study of
1	a) Four stroke diesel and petrol engines.
	b) Two stroke petrol and diesel engines
2	Studies of fuel supply systems of diesel and petrol engines.
3	Study of cooling, lubrication and ignition system in diesel and petrol engines.
4	To study various types of Boilers and to study Boiler mounting and accessories.
5	To study various types of Dynamometers.
6	To study Multi Stage Air Compressors.
7	To find the BHP, Thermal efficiency of four stroke diesel engine.
8	Study of Brakes, Clutches, and Transmission System.
9	To prepare a comparison sheet of various automobiles (4 Wheeler and 2 Wheeler).
10	Study of parallel flow and counter flow heat exchanger.
11	Load test on Petrol Engine and Diesel engine.
12	Determination of conductivity of insulating powder.
13	Determination of effectiveness of parallel and counter flow heat exchanger.

5PIU12: MACHINE TOOL DESIGN SESSIONAL

B.Tech. (P&I) 5th Semester 0I + 0T + 3P

Max. Marks: 75 Enom Hourse 2

0L+0	LXAIII HOURS: 3
SN	SESSIONAL WORK
1	Functional requirements of machine tools.
2	Working and auxiliary motions in machine tools.
3	Design criterion for machine tool structure, Static & dynamic stiffness.
4	Function & important requirements of spindle unit.
5	Importance of machine tool compliance with respect to machine tool accuracy.
6	Application and sketching of Slider-crank mechanism, Cam mechanism, Rack &
	pinion mechanism, Nut & screw mechanism, Ratchet gear mechanism, Geneva
	mechanism, Reversing mechanism, Differential mechanism, Norton mechanism,
	Mender's mechanism.
7	Aim of speed & feed rate regulation, stepped regulation of speed.
8	G.P. series is used in steeped regulation of speed.
9	Design a four / six speed Gear Box.
10	Design of Lathe bed. (including Torque analysis of lathe bed, bending of lathe bed,
	designing for torsional rigidity, use of reinforcing stiffener in lathe bed)
11	Analysis of force under headstock, tail stock and saddle.
12	Design of Guide ways / Slide ways.
13	Estimation of power requirements and selection of motor for metal cutting machine
	tool spindles.

Scheme & Syllabus: Production & Industrial Engineering Approved B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19

5PIU13: METROLOGY LAB.

B.Tech. (P&IE) 5th Semester 0L+0T+2P

SN	NAME OF EXPERIMENT
1	Study of various measuring tools like dial gauge, micrometer, vernier caliper and
L	telescopic gauges.
2	Measurement of angle and width of a V-groove by using bevel protector
3	To measure a gap by using slip gauges
4	Measurement of angle by using sine bar.
Ц	Study and use of surface roughness instrument (Taylor Hobson make) Inspection of
5	various elements of screw thread by Tool makers microscope and optical projector.
6	Measurement of gear tooth thickness by using gear tooth vernier caliper.
7	To check accuracy of gear profile with the help of profile projector.
8	To determine the effective diameter of external thread by using three-wire method.
0	To measure flatness and surface defects in the given test piece with the help of
9	monochromatic check light and optical flat.
10	To plot the composite errors of a given set of gears using composite gear tester.
11	Measurement of coating thickness on electroplated part and paint coating on steel
11	and non-ferrous material using coating thickness gauge.
12	Study and use of hardness tester for rubber and plastics.
12	To check the accuracy of a ground, machined and lapped surface - (a) Flat surface
13	(b) Cylindrical surface.
14	To compare & access the method of small-bore measurement with the aid of spheres.

5PIU14: QUALITY CONTROL LAB

B.Tech. (P&IE) 5th Semester

0L+0	/T+3P
SN	NAME OF EXPERIMENT
1	Case study on X bar charts and process capability analysis
2	PChart:
	(a)Verify the Binomial Distribution of the number of defective balls by treating the
	balls with a red colour to be defective.
	(b) Plot a P-chart by taking a sample of n=20 and establish control limits
3	To plot C-chart using given experimental setup
4	Operating Characteristics Curve:
	(a) Plot the operating characteristics curve for single sampling attribute plan for
	n = 20; $c = 1$, 2, 3 Designate the red ball to defective.
	(b) Compare the actual O.C. curve with theoretical O.C. curve using
	approximation for the nature of distribution
5	Distribution Verification:
	(a) Verification of Normal Distribution.
	(b) To find the distribution of numbered cardboard chips by random drawing one
	at a time with replacement. Make 25 subgroups in size 5 and 10 find the type
	of distribution of sample average in each case. Comment on your
	observations
6	Verification of Poisson distribution
7	Central Limit Theorem:
	(a) To show that a sample means for a normal universe follow a normal
	distribution.
	(b) To show that the sample means for a non normal universe also follow a
	normal Distribution.

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering Approved 2017-18 page no.: 35 Dean, FA & UD

Page 29

6PIU1: TOOL ENGINEERING

B.Tech. (P&I) 6th semester 3L+1T

UNIT	CONTENTS	CONTACT HOURS
	Introduction, properties of tool material, types of tool material,	5
I	basic requirement of tool material and general consideration in tool	
	design.	3
	Design of material-cutting tool: Single point tools, basic principles of	4
II	multiple point tools, Linear-Travel tools (Broach),	
	Axial Feed Rotary Tools (Drill), Milling Cutters.	3
	Introduction to press, Press accessories, Die design fundamentals,	
TTT	Strip layout,	4
111	Blanking and piercing Dies, Combination Dies (compound &	
	progressive die).	4
137	Design of Bending Dies,	3
IV	Design of Drawing and Deep drawing dies.	5
	Introduction to Jig & Fixtures, usefulness, Principles of Jig & Fixtures	
	design, Principle of location, Locating and Clamping devices.	4
v	Basic construction principle, Drilling jigs, Brief introduction about	
	Milling fixtures, Grinding fixtures, Broaching and Lathe fixtures.	5
	TOTAL	40

TEX	IT BOOK	
1	Rao, P.N. "Manufacturing Technology" vol.I, Tata McGraw Hill Ltd	
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Tool design by Donldson	2009
2	Tool design by ASTME	2004
3	Metal Cutting Theory and Cutting Tool Design, Arshinov & Acherken,	2001
	MTR Publishers	
4	Machine Tool Design, Acherken, MIR Publishers	1992
5	Principles of Machine Tools, Sen & Bhattacharya, New Central Book	2001
	Agency	
6	Principles of Metal Cutting, Shaw, M.C., Oxford & IBH	1991
7	Fundamentals of Tool Engineering Design, Basu, Mukhopadhyay & Mishra, Oxford & IBH	1996

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 36

Page 30 Approved Dean, FA & UD

6PIU2: FACILITIES PLANNING

B.Tech. (P&I)	6 th Semester
3L+1T	

UNIT	CONTENTS	CONTACT HOURS
	Definition of facilities planning, significance and objectives of facilities	
т	planning. Process of facilities planning. Strategic facilities planning.	5
1	Product selection, Review of various types of manufacturing processes	
	and Process selection.	3
	Facility Location: Need for location decisions, location factors, location	
	analysis: Qualitative methods: subjective, equal weight, variable weight,	
	factor point rating and composite measure method.	4
II	Quantitative methods: location breakeven analysis, median model,	
	gravity model, Brown and Gibson method, single facility location	
	models, minmax location problem, Location allocation models,	
	Bridgeman's Dimensional Analysis.	4
	Facility Layout: Importance and function, objectives and advantages of	
	good layout, types of plant layout problems. Basic layout types:	
	Product, Process, Group and fixed position layout. Plant layout factors,	
	Layout procedure, Systematic layout planning procedure, Flow and	
III	activity analysis, Process charts, flow diagram, Travel chart, activity	
	relationship chart, and Relationship diagram. Evaluation and	
	implementation of layout. Industrial buildings, influence of building on	_
	layout.	4
	Computer aided layout: CRAFT, CORELAP, COFAD, ALDEP, PLANET.	4
	Production and assembly line balancing - various operational research	
	techniques for balancing of assembly line and fabrication line.	5
IV	Material Handling: Principles of material handling, materials handling	
	system design. Systematic handling analysis, Unit loads. Computer	
	Aided Material Handling.	3
	Material Handling Equipment: Conveyors, monorail, hoists and Cranes;	
	automated storage and retrieval systems (AS/RS), Industrial trucks,	_
V	Containers and supports, Auxiliary and other equipments	5
	Receiving and shipping, storage and warehousing; Equipment	
	planning, layout planning.	3
	TOTAL	40

TEX	IT BOOK	
1	Facilities Planning, Tomphins James A & White John A, John Wiley &	
1	Sons	
REF	TERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of
- SA		Pub.
1	Facility Layout & Location, Francis R.C. & White J.A. Prentice Hall.	2002
2	Material Handling, Immer, McGraw Hill	2009
3	Practical Plant Layout, Muther, McGraw Hill	1998
4	Plant Layout & Design , Immer , McGraw Hill	2004

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Page 31
Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 37
Page 31
Pag

6PIU3: TOTAL QUALITY MANAGEMENT

B.Tech.	(P&I)	6 th	semester
3L+OT			

Unit	Contents	Contact Hours
	Introduction to TQM: Definition, Basic approach, Guru's of TQM, TQM framework, benefits.	2
I	Leadership: Characteristics of Quality Leadership, Leadership Concepts, The 7 Habits of Highly Effective People, The Deming Philosophy, The Role of TQM LeadersStrategic Planning Communications, Decision Making.	3
	Customer Satisfaction: Introduction, Customer Perception of Quality, Service Quality, Translating Needs into Requirements, Customer Retention.	3
	Continuous Process Improvement: Introduction, Process, The Juran Trilogy, Improvement Strategies, Types of Problems PDSA Cycle, Problem-Solving Method, DMAIC, Kaizen, Reengineering, six sigma.	3
п	Supplier Partnership: Principles of Customer/Supplier Relationship Partnering, Sourcing Supplier, Selection ,Supplier Certification Supplier Rating, Relationship Development.	2
	Performance Measures: Basic Concepts, Strategy, performance measure presentation, Cost of Quality, Malcolm Baldrige and Rajiv Gandhi National Quality Award, Balanced Score Card	3
	Lean Enterprise: Historical Review, Lean Fundamentals, Value Stream Map, Implementing Lean, Benefits.	3
ш	Organizational Structure Benefits.	3
	deciding what to benchmark, Pitfalls and Criticisms.	2
	Quality Management Systems: Benefits of ISO Registration, ISO Series of Standards, ISO 9001 Requirements, Implementation, Documentation,	2
IV	of ISO 14001, ISO 14001, Requirements, Benefits, Integrating QMS and EMS. Other EMS Systems,	2
	Quality Function Deployment: The QFD Team, QFD Process.	2
	Total Productive Maintenance: The Plan, Learning the New Philosophy, Promoting the Philosophy, Training, Improvement Needs, Goal,	2
	Management Tools: Forced Field Analysis, Nominal Group Technique, Affinity Diagram, Interrelationship Digraph, Tree Diagram, Matrix Diagram, Process Decision Program Chart, Activity Network Diagram	2
V	Experimental Design: Introduction, Basic Statistics, Hypothesis, t Test F Test. One Factor at a Time Orthogonal Design, Point and Interval Estimate,	
	Two Factors Full Factorials, Fractional Factorials.	3
	Arrays, Signal-to-Noise Ratio, Parameter Design,	3
	TOTAL	40

TEX	IT BOOK	
-	D. H. Besterfield, G. H Besterfield, Hemant Urdhwareshe, Total Quality	0012
1	Management: Revised Third Edition, Pearson Higher Education	2015
REF	TERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year Pub.
1	Total Quality Management: text with cases, John S Oakland, Butterworth-	2003
	Heinemann	
2	Total Quality Management for Engineers, Zaire, M., Wood Head Publishing	1991
3	Total Quality Control, Feigenbaum. Armand V., McGraw Hill	1991
4	The Management and Control of Quality, (5th Edition), James R.Evans and	2002
	William M.Lidsay, South-Western (Thomson Learning)	

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 38

-19 Page 32 Approved Dean, FA & UD

6PIU4: OPERATIONS RESEARCH

B.Tech. (P&I) 6th semester 3L+0T

Unit	Contents	Contac t hours
	Overview of Operations Research	1
	Linear Programming: Applications and model formulation, Graphical	
Ι	method, Simplex method, duality and Sensitivity analysis.	4
	Transportation Model and Assignment Model including travelling salesman	
	problem.	4
	Integer Linear Programming: Enumeration and cutting Plane solution	
	concept, Gomory's all integer cutting plane method, Branch and Bound	
II	Algorithms, applications of zero-one integer programming.	5
	Replacement Models: Capital equipment replacement with time, group	
	replacement of items subjected to total failure.	3
	Queuing Theory : Analysis of the following queues with Poisson pattern of	
	arrival and exponentially distributed service times, Single channel queue	
	with infinite customer population, Multichannel queue with infinite	•
	customer population,	3
III	competitive Situations and Solutions: Game theory, two person zero sum	
	of the same Solution of sames with addle points, deminance principle	
	Pectangular games without saddle point – mixed strategy approximate	
	solution and simplified analysis for other competitive situations. Application	
	of linear programming	4
	Theory of Decision making: Decision making under certainty, risk and	
	uncertainty. Decision trees.	5
	Deterministic Inventory control models: functional role of inventory.	_
IV	inventory costs, model building, Single item inventory control model without	
	shortages, with shortage and quantity discount. Inventory control model	
	with uncertain demand, service level, safety stock, P and Q systems, two bin	
	system. Single period model. Selective Inventory control techniques.	4
	Probabilistic Inventory control models: Instantaneous demand without	
	setup cost and with setup cost, Continuous demand without setup cost	4
	Simulation: Need of simulation, advantages and disadvantages of	
v	simulation method of simulation. Generation of Random numbers,	
	Generation of Normal Random numbers. Use of random numbers for system	
	simulation. , Monte Carlo simulation, simulation language ARENA,	
	Application of simulation for solving queuing Inventory Maintenance,	
	Scheduling and other industrial problems	4
	TOTAL	40

TEX	IT BOOK	
1	Operations Research, Ravindran, Phillips and Solberg, Wiley India.	
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Introduction to Operations Research, Hillier F.S. and Lieberman G.J., CBS Publishers.	2002
2	Operations Research, Taha H.A., Pearson Education	2012
3	Linear Programming and Network Flows, Bazaraa, Jarvis and Sherali, Wiley India.	2003
4	Principles of Operations Research, Wagner H.M., Prentice Hall of India.	2001
5	Operations Research, Gupta and Heera, S. Chand Publications.	2008

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 39

Page 33 Approved

6PIU5.1: MICRO AND NANO MANUFACTURING

B.Tech. (P&I) 6th semester 3L+OT

Nanoscale Cutting:- Introduction, Material representat microstructure, Atomic interaction, Nanometric machining Meso micromechining: Introduction size effects in microm	ion and 4
Meso micromobining. Introduction size effects in micror	
I mechanism for large plastic flow, origin of the size effe machining processes.	achining, et, Meso-
Burr formation in micromachining operations.	4
Microturning:- Characteristic features and applications, Mic tools and tooling systems, Machine tools for microturning	roturning 3
II Microdrilling: Characteristic features and applications, Micro tooling systems, Machine tools for microdrilling	drills and
Micromilling:- Characteristic features and applications, Micro tooling systems, Machine tools for micromilling,	mills and 3
Microgrinding and Ultra-precision Processes: Introduction and nanogrinding, Nanogrinding apparatus, Nanogrinding pr	n, Micro ocedures,
Nanogrinding tools, Preparation of nanogrinding wheels, systems, Vitrified bonding	Bonding 4
III Non-Conventional Processes: Laser Micromachining:- Intr Fundamentals of lasers, Stimulated emission, Types of lase microfabrication, Nanosecond pulse microfabrication, Shiel Effects of nanosecond pulsed microfabrication, Picoseco	oduction, rs, Laser ling gas, nd pulse
microfabrication, Femtosecond pulse microfabrication nanofabrication.	, Laser 4
Evaluation of Subsurface Damage in Nano and Microm Introduction, Destructive evaluation technologies, Cross	chining: 4
microscopy, Preferential etching, Angle lapping/angle polishi diffraction, Micro-Raman spectroscopy.	ng, X-ray 4
Applications of Nano and Micromachining in Industry:Int	oduction, 4
Typical machining methods, Diamond turning, Shape	/planner
Fresnel lens, Microstructured components, Semiconduct	or wafer
	TOTAL 39

TEX	IT BOOK	
1	Micro and Nano manufacturing by Marks J. Jackson springer	2008
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1		0000
-	J. Paulo Davim, Mark J. Jackson, Nano and Micromachining ISTE Ltd	2009

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Page 34 Scheme & Syllabus: Production & Industrial Engineering Approved 2017-18 page no.: 40 Dean, FA & UD

6PIU5.2: COMPUTER AIDED DESIGN AND GRAPHICS

B.Tech. (P&I) 6th semester 31.+07

Max. Marks: 150 Exam Hours: 3

UNIT	CONTENTS	CONTACT HOURS
_	Overview of Computer Graphics: Picture representation, Coordinate Systems, Raster Scan Display, DDA for line generation and Bresenham's algorithm for line and circle generation; Graphics	
L	standards: GKS, IGES, STEP, DXF. Different types of models.	5
	Parametric representation of plane curves: line, circle, ellipse, parabola and hyperbola.	4
	Parametric representation of Space Curves: Cubic spline curve, Bezier Curve and B Spline Curves. Blending of Curves.	4
11	Parametric representation of Surfaces: Hermite Bicubic surfaces, Bezier surfaces and Bspline surfaces.	4
III	Solid Representation: B-rep. and CSG. Comparison between three types of models.	7
IV	Two and Three Dimensional Transformation of Geometric Models: Translation, Scaling Reflection, Rotation and Shearing, Homogeneous Representation, Combined Transformation.	4
	Projection of Geometric models: Parallel and Perspective Projection.	4
v	Clipping: Point clipping, Line clipping, Cohen- Sutherland algorithm etc., Viewing transformation.	4
	Hidden line and surface removal : Techniques and Algorithms. Shading and Rendering.	4
	TOTAL	40

TEX	KT BOOK	
1	Zeid and Sivasubramanian, CAD/CAM: Theory and Practice, Tata McGraw	
1	Hill	
•	Rogers and Adams, Mathematical Elements for Computer Graphics, Tata	
4	McGraw Hill	
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Rao P.N., CAD / CAM Principles and Applications, McGraw Hill.	2004
2	Pao Y.C., Elements of Computer Aided Design and Manufacturing, John	1984
	Wiley and Sons.	
3	Alavala C.R., CAD/CAM: Concepts and Applications, Prentice Hall of	2008
	India.	
4	Xiang and Plastock, Computer Graphics, Schaum's Outlines, Tata	2007
	McGraw Hill.	

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 State interest and interest Scheme & Syllabus: Production & Industrial Engineering

2017-18 page no.: 41

Page 35

Approved Dean, FA & UD

6PIU5.3: MAINTENANCE MANAGEMENT B.Tech. (P&I) 7th semester

Max. Marks: 150

3L+01	Exa	m Hours: 3
UNIT	CONTENTS	CONTACT HOURS
т	Introduction -Fundamentals of Maintenance Engineering. Maintenance Engineering its importance in material & energy conservation, inventory control, productivity, safety, pollution control etc.	3
-	Safety Regulations, pollution problems, human reliability, total quality management (TQM), total productivity maintenance (TPM), environmental issues in maintenance, ISO 9000.	4
п	Maintenance Management - types of maintenance strategies, Planned and unplanned maintenance, breakdown, preventive & predictive maintenance.Their comparison, advantages & disadvantages. Limitations.	4
	Computer aided maintenance, maintenance scheduling, spare part management, inventory control, organisation of maintenance department.	4
	Tribology in Maintenance, friction wear and lubrication, friction & wear mechanisms, prevention of wear, types of lubrication mechanisms, lubrication processes.	3
III	Lubricants - types, general and special purpose, additives, testing of lubricants, degradation of lubricants, seal & packings.	3
	Repair methods for basic machine elements: Repair methods for beds, slideways, spindles, gears, lead screws and bearings-Failureanalysis- Failures and their development-Logical fault location methods- Sequentialfaultlocation.	3
	Machine Health Monitoring - Condition based maintenance, signature analysis, oil analysis, vibration, noise and thermal signatures, on line & off line techniques,	4
IV	Instrumentation & equipment used in machine health monitoring. Instrumentation in maintenance, signal processing, data acquisition and analysis, application of intelligent systems, data base design.	4
v	Reliability, availability & maintainability (RAM) Analysis - Introduction to RAM failure mechanism, failure data analysis, failure distribution, reliability of repairable and non repairable systems.	4
	Improvement in reliability, reliability testing, reliability prediction, utilisation factor, system reliability by Monte Carlo Simulation Technique.	4
	TOTAL	40

TEXT BOOK		
1	Anthony Kelly, Strategic Maintenance Planning, Butterworth-Heinemann	2006
2	R. C. Mishra, K. Pathak , Maintenance Engineering and Management, PHI	2012
4	Learning Pvt. Ltd	2012
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub
1	Higgins L.R., "Maintenance Engineering Hand book", McGraw Hill	1988
2	Maintenance & Spare parts Management Gopal Krishnan	
3	Srivastava S.K., "Industrial Maintenance Management", S. Chand and Co	1981
4	Hand book of Condition Monitoring CNR Rao	
5	White E.N., "Maintenance Planning", I Documentation, Gower Press	1979
6	Armstrong, "Condition Monitoring", BSIRSA	1988
7	Davies, "Handbook of Condition Monitoring", Chapman & Hall,	1996

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering Approved

Page 36 Dean, FA & UD

2017-18 page no.: 42

6PIU6.1:DATA ANALYTICS

B.Tech.	(P&I)	6 th	semester
3L+0T			

UNIT	CONTENTS	CONTACT HOURS
I	Introduction to Multivariate Statistics-Degree of Relationship among Variables-Review of Univariate and Bivariate Statistics-Screening Data Prior to Analysis-Missing Data, Outliers, Normality, Linearity,	
	and Homoscedasticity.	4
II	Multiple Regression- Linear and Nonlinear techniques- Backward- Forward-Stepwise- Hierarchical regression-Testing interactions (2way interaction) - Analysis of Variance and Covariance (ANOVA & ANCOVA) - Multivariate Analysis of Variance and Covariance	3
	(MANOVA & MANCOVA).	
	Simple Discriminant Analysis- Multiple Discriminant analysis-	
	Assessing classification accuracy- Conjoint analysis (Full profile method).	4
IV	Principal Component Analysis -Factor Analysis- Orthogonal and Oblique Rotation-Factor Score Estimation-Multidimensional Scaling-Perceptual Map-Cluster Analysis (Hierarchical Vs Nonhierarchical Clustering).	4
v	Latent Variable Models an Introduction to Factor, Path, and Structural Equation Analysis- Time series data analysis (ARIMA model) – Decision tree analysis (CHAID, CART) - Introduction to Big Data Management.	4
	TOTAL	39

TEX	T BOOK	
1	Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. "Multivariate data analysis", (7th edition). Pearson India.	2015
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Tabachnick, B. G., & Fidell, L. S., "Using multivariate statistics", (5th edition). Pearson Prentice Hall	2001
2	Gujarati, D. N., "Basic econometrics", Tata McGraw-Hill Education.	2012
3	Malhotra, N. K., "Marketing research: An applied orientation", 5/e. Pearson Education India.	2008
4	Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. "Applied multiple regression/correlation analysis for the behavioral sciences", Routledge	2013
5	Han, J., Kamber, M., & Pei, J. "Data mining: concepts and techniques: concepts and techniques", Elsevier.	2011

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 43

Page 37 Approved Dean, FA & UD

6PIU6.2: MANAGERIAL ACCOUNTING, FINANCE & ECONOMICS B.Tech. (P&I) 6th semester 3L+OT

UNIT	CONTENTS	CONTACT HOURS
I	Concept and scope of Engineering Economics. Problem Solving and decisionmaking. Time Value of Money: Interest formulae and their applications.	3
	Cash Flow Diagrams. Single and multiple payment cash flows.	4
	Methods of comparison of alternatives – present worth method (Revenue dominated cash flow diagram), Future worth method (Revenue dominated cash flow diagram, cost dominated cash flow diagram).	5
11	Annual equivalent method (Revenue dominated cash flow diagram, cost dominated cash flow diagram), rate of return method, Examples in all the methods.	4
ш	Replacement studies: current salvage value of defender, replacement due to deterioration and obsolescence. Depreciation meaning and methods of computing depreciation-Straight line method of depreciation, declining balance method of depreciation, Sum of the years digits method of depreciation, sinking fund method of depreciation/ Annuity method of depreciation.	4
	and costs Control: Costs and Cost Accountancy: Meaning of cost and cost Accountancy (C.A.) Financial Accountancy (F.A.) comparison between C.A. and F.A.	
	Elements of cost Direct cost and indirect cost, variable costs and fixed cost calculation of Product cost, Cost control-Techniques of cost control.	4
IV	Budgets- Meaning Kinds, Advantages, Budgetary control. Inflation: Causes of inflation, consequences of inflation, measuring inflation, leasing/buying decisions. Break-Even analysis, linear break-even analysis, Break-Even charts and relationships, Non-linear break-even analysis	3
v	Finance & Financial Statements: Introduction Needs of Finance, Kinds ofCapital Sources of fixed capital shares-ordinary and PreferenceShares. Borrow capital. Surplus profits: Sources of Working capital, Management of working capital, Financial Institutions.	4
	Financial Statement (i) Profit & Loss Statement (ii) Balance Sheet (B.S.) Financial ratios-current ratio, Liquidity ratio, Profits investment ratio, equity ratio and Inventory turn-over ratio. Management and Financial ratio, Money conversion cycle in the Business.	
	TOTAL	40

TEX	T BOOK	
1	Engineering Economics, Riggs Bedworth, Tata McGraw Hill, New Delhi	
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Engineering Economics and Costing, Sasmita Mishra, Prentice Hall of India	
2	Financial Planning Management and Control, Prasanna Chandra, Tata McGraw- Hill.	

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering Czialn inge

6PIU6.3: DESIGN AND MANUFACTURING OF PLASTIC PRODUCTS B.Tech. (P&I) 6th semester

3L+OT

UNIT	CONTENTS	CONTACT HOURS
I	Plastics Materials : An Overview, Classification, Thermoplastics, Thermosets, Crystalline, Amorphous, and Liquid, Additives, Reinforcements, and Fillers, Physical Properties and Terminology.	5
	Mechanical Properties, Thermal Properties, Electrical Properties, Environmental Considerations, Structural Analysis	3
	Design Considerations for Injection-Molded Parts : Injection Molding Process, Design Strategy, Efficient and Functional Design, Material Selection,	2
п	Nominal Wall Thickness, Normal Ranges of Wall Thickness, Structural Requirements of the Nominal Wall,	2
	Insulation Characteristics of the Nominal Wall, Impact Response of the Nominal Wall, Draft, Structural Reinforcement, Ribs, Other Geometric Reinforcement, Bosses, Coring, Fillets and Radii, Undercuts	4
III	Polymer processing techniques such as extrusion, compression and transfer moulding.	4
	moulding, calendaring.	4
	Assembly: General Types of Assembly Systems, Molded-In Assembly Systems, Snap-Fit Assembly, Molded-In Threads, Press-Fits, Chemical Bonding Systems, Solvent Welding, Adhesive Bonding, Thermal Welding Methods, Ultrasonic Welding, Vibration Welding,	4
IV	Spin Welding, Radio Frequency (RF) Welding, Electromagnetic or Induction Welding, Assembly with Fasteners, Bolted Assembly, Threaded Metal Inserts, Self-Tapping Screws, Riveted Assembly, Sheet Metal Nuts, Specialty Plastic Fasteners	4
	Machining of Plastics: Drilling and Reaming, Thread Tapping, Sawing,	4
v	Finishing and Decorating of Plastics : Painting, Vacuum Metallizing and Sputter Plating, Electroplating, Flame Spraying/Arc Spraying, Hot Stamping	4
	TOTAL	40

TEX	IT BOOK	
1	Design and Manufacture of Plastic Parts, R.L.E. Brown, John Wiley and	1980
–	Sons, New York	
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Designing with Plastics, Gerhard, Hanser Verlag	
2	Handbook of Plastics Joining: a practical guide, PDL handbook series,	
	Plastics Design Library, William Andrew	
3	Modern Plastics Handbook, McGraw Hill handbooks, Modern plastics	1997
	series, Charles A. Harper, McGraw-Hill Professional	
4	Industrial Plastics: theory and applications, Erik Lokensgard and Terry L.	2000
	Richardson, 4th Edition, Cengage Learning	

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering Approved

2017-18 page no.: 45

6PIU11: METAL CUTTING LAB.

B.Tech. (P&I) 6th Semester 0L+0T+2P

SN	NAME OF EXPERIMENT
1	Find out Chip reduction co-efficient (reciprocal of chip thickness ratio) during single
	point turning.
2	Forces measurements during orthogonal turning.
3	Estimation of Power required during orthogonal turning.
4	Torque and Thrust measurement during drilling.
5	Forces measurement during plain milling operation.
6	Measurement of Chip tool Interface temperature during turning using thermocouple
	technique.
7	Exercise involving cylindrical grinding on surface grinding machine.
8	Study the variation of surface roughness with different speed and feed during plain
	milling operation on flat surface.
9	Study of capstan lathe and its tooling and prepare a tool layout & job as per given
	drawing.
10	Engrave a profile on given workpiece using EDM machine.
11	Exercises for boring of cylindrical bores and machining of external surfaces
	coincident with internal bores on boring machine.

6PIU12: INDUSTRIAL ENGINEERING LAB-I

B.Tech. (P&I) 6th Semester OL+OT+2P

SN	NAME OF EXPERIMENT	CONTACT HOURS
	Case Study on the following:	
1	Work Methods Design	
2	Location Planning	
3	Systematic Layout Planning	
4	Process Control Charts	
5	Productivity	
6	Project Management	
7	Materials Management	
8	Capacity Planning	

6PIU13: OPERATIONS RESEARCH LAB.

B.Tech. (P&I) 6th Semester 0L+0T+2P

0L+	0T+2P Exam Hours: 2
SN	LABORATORY WORK/NAME OF EXPERIMENT
	Solve using software and verify with analytical methods
1	Linear programming problem
2	Assignment problem
3	Transportation problem
4	Integer programming problem
5	Queuing Problem
6	Inventory problem
7	Simulation Problem
8	Replacement Problem
9	Decision Tree
10	Game theory

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering Approved

Page 40

6PIU14: STATISTICAL LAB.

B.Tech. (P&I) 6th Semester 0L+0T+2P LABORATORY WORK/NAME OF EXPERIMENT SN Solve using software and verify with analytical methods 1 **Hypothesis Testing** • Mean: One-Sample z-test, Two-sample z-test, One-Sample t-test, Two-Sample ttest, Paired t-test, Poisson test with Bonferroni, Dunn-Sidak adjustments • Variance: Single Variance, Equality of Two Variances, Equality of Several Variances • Correlation: Zero Correlation, Specific Correlation, Equality of Two Correlations • Proportion: Single Proportion, Equality of Two Proportions • Appropriate Quick Graphs • Resampling - Bootstrap, without replacement, Jackknife 2 **Descriptive Statistics** • Coefficient of variation, std err of mean • Adjustable confidence intervals of mean • Skewness, kurtosis, including standard errors 3 **Design of Experiments** • Complete and incomplete factorial designs • Latin square designs, 3-12 levels per factor • Box and Hunter 2-level incomplete designs • Taguchi designs 4 ANOVA • Designs: unbalanced, randomized block, complete block, fractional factorial, mixed model, nested, split plot, Latin square, crossover and change over, • ANCOVA • Means model for missing cells designs • Repeated measures: one-way, two or more factors, three or more factors • Options to test normality and homoscedasticity assumptions • Type I, II and III sums of squares 5 **Time Series** • Smoothing: LOWESS, moving average, running median, and exponential Seasonal adjustment

• Specify autoregressive, difference and moving average parameters

• Fourier and inverse Fourier transforms

• Box-Jenkins ARIMA model

• Forecast and standard errors

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 47
Page 41
Approved
Dean, FA & UD

7PIU1: METAL FORMING PROCESSES

B.Tech. (P&I) 7th semester 3L+OT

Unit	Contents	Contact hours
Ŧ	FUNDAMENTALS OF METAL FORMING Classification of forming processes, Mechanics of metal working, Flow stress determination, Temperature in metal working, strain rate effects, metallurgical structures, deformation zone theory, hydrostatic pressure, residual atracases.	3
1	Review of state of stress – Components of stress, behavior of metal when subjected to stress, Introduction to stress tensor, principal stresses, Stress deviator, Mohr's circle of stress (two dimension and three dimensions), Mohr's circle of strain, von-mises, Tresca yield criteria.	5
	FORGING: Classification, equipment, forging in plain strain, open-die forging, closed-die forging, calculation of forging loads in closed-die forging, forging defects, powder metallurgy forging, residual stresses in forging.	4
	ROLLING: Classification, Rolling mills, hot and cold rolling, rolling of bars and shapes, forces and geometrical relationships, simplified analysis of rolling load: rolling variables, Problems and defects in rolled products, theories of cold and hot rolling, torque and power.	4
III	EXTRUSION: Classification of extrusion processes, equipment, hot extrusion, deformation, lubrication and defects in extrusion, analysis of the extrusion process, cold extrusion and cold forming, hydrostatic extrusion, extrusion of tubing, influence of friction, extrusion force calculation, production of seamless pipe and tubing.	4
	DRAWING OF RODS, WIRES AND TUBES; Introduction, rod and wiredrawing, analysis of wiredrawing, tube-drawing processes, analysis of tube drawing, residual stresses in road, wire, and tubes, defects, Tube drawing and sinking processes, Tube bending.	4
IV	SHEET METAL FORMING: Classification – conventional and HERF processes – presses – types and selection of Presses, forming limit criteria, Limiting Draw ratio - processes: Deep drawing,	3
	spinning, stretch forming, plate bending, Rubber pad forming, bulging, Explosion forming, electro hydraulic forming, Magnetic pulse forming.	5
v	RECENT ADVANCES: Super plastic forming – Electro forming – fine blanking – Hydro forming – Peen forming – LASER Forming –	4
	Micro forming - P/M forging – Isothermal forging – high speed hot forging – near net shape forming, high velocity extrusion – CAD and CAM in forming	
	TOTAL	4 0

TEX	KT BOOK	
1	Rao, P.N. "Manufacturing Technology", Vol 2, 3 TMH Ltd.,	
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Nagpal G.R. "Metal forming processes", Khanna publishers.	
2	Serope Kalpakjian, Steven R Schmid, "Manufacturing Process for	
	Engineering Materials" – Pearson Education	
3	Edward M. Mielink, "Metal working science Engineering, McGraw Hill,	
	Inc,.	
4	Metal Hand book Vol.14, "Forming and Forging", Metal Park, Ohio, USA.	
5	Dieter G.E., "Mechanical Metallurgy", McGraw Hill, Co., S.I.	

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Page 42 Scheme & Syllabus: Production & Industrial Engineering Approved 2017-18 page no.: 48 Dean, FA & UD

7PIU2: OPERATIONS PLANNING AND CONTROL

B.Tech. (P&I) 7th semester 3L+0T

UNIT	CONTENTS	CONTACT HOURS
I	Introduction to operations management (OM), the scope of OM; Historical evolution of OM; Trends in business; the management process. Operations Strategy, Competitiveness and Productivity Demand Forecasting: components of forecasting demand, Approaches to forecasting: forecasts based on judgment and opinion, Time series data. Associative forecasting techniques, Accuracy and control of forecasts, Selection of forecasting technique.	3
п	Product and Service design, Process selection, Process types, Product and process matrix, Process analysis. Capacity Planning: Defining and measuring capacity, determinants of effective capacity, capacity strategy, steps in capacity planning process, determining capacity requirements, Capacity alternatives, Evaluation of alternatives; Cost-Volume analysis.	3
III	Planning levels: long range, Intermediate range and Short range planning, Aggregate planning: Objective, Strategies, and techniques of aggregate planning. Master scheduling; Bill of materials, MRP; inputs processing and outputs, and overview of MRPII, use of MRP to assist in planning capacity requirements. Introduction to ERP	4
IV	Production Control: Capacity control and priority control, production control functions; Routing, scheduling, dispatching, expediting and follow up. Techniques of production control in job shop production, batch production and mass production systems.sequencing: priority rules, sequencing jobs through two work centers, scheduling services Introduction to Just-in-time (JIT) and Lean Operations: JIT production, JIT scheduling, synchronous production, Lean operations system	4
v	Supply Chain Management (SCM): Need of SCM, Bullwhip effect, Elements of SCM, Logistics steps in creating effective supply chain, Purchasing and supplied management. Project Management: Nature of projects, project life cycle, Work breakdown structure, PERT and CPM, Time-Cost trade-offs: Crashing.Resource allocation, leveling	3 5 40

TEX	IT BOOK	
1	Stevenson, Operations Management, Tata McGraw Hill.	
REFERENCE BOOKS		
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Roberta S. Russell, Bernard W. Taylor, Operations Management, John	2010
	Wiley & Sons	
2	Joseph S. Martinich, Production And Operations Management, John	2008
	Wiley & Sons	
3	S.N. Chary, Production and Operations Management, Tata McGraw Hill	2009
4	Norman Gaither, Greg Frazier, Operations Management, Thomson	2002
	Learning	

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Page 43 Scheme & Syllabus: Production & Industrial Engineering Approved 2017-18 page no.: 49 Dean, FA & UD

7PIU3: ADVANCED MANUFACTURING METHODS

B.Tech. (P&I) 7th semester 3L+0T

UNIT	CONTENTS	CONTACT HOURS
_	Introduction and classification of advanced machining process,	
I	consideration in process selection, difference between traditional and non-traditional process, Hybrid process.	3
II	Abrasive finishing processes : AFM, MAF (for Plain and cylindrical surfaces).	4
III	Mechanical advanced machining process : Introduction, Mechanics of metal removal, process principle, Advantages, disadvantages and applications of AJM,USM,WJC.	5
	Thermo electric advanced machining process: Introduction,	
IV	applications about EDM, EDG,	4
	LBM, PAM, EBM	6
	Electrochemical and chemical advanced machining process: ECM,	
v	ECG, ESD, Chemical machining,	5
•	Anode shape prediction and tool design for ECM process. Tool (cathode)	
	design for ECM Process.	3
	TOTAL	40

TEX	IT BOOK	
1	Modern Machining Process, Pandey and Shan, Tata McGraw Hill	1980
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Advance Machining Process, Jain V.K., Allied Publishers Ltd.	2002
2	Non Traditional Manufacturing Process, Gary F. Bevedict, Marcel Dekker	1987
	Inc New York.	
3	Non-Conventional Machining Process, Mishra P.K., Narosa Publishing	2006
	House	
4	Non-Conventional Machining Process, J.A. McGeough	1988
5	Rapid Prototyping: principles and applications, Chee Kai Chua, Kah Fai	2003
	Leong and Chu Sing Lim,2nd Edition, World Scientific	
6	Rapid Prototyping: Theory and Practice, Ali Kamrani, Emad Abouel Nasr	2006
	and Springer; 1 st Edition,	

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Page 44 Scheme & Syllabus: Production & Industrial Engineering Approved Dean, FA & UD

7PIU4: COMPUTER INTEGRATED MANUFACTURING

B.Tech. (P&I) 7th semester 3L+OT

UNIT	CONTENTS	CONTACT HOURS
I	Introduction to CIM: Overview of Production Systems, the product cycle, Automation in Production Systems, computer's role in manufacturing, sources and types of data used in manufacturing. The Beginning of CAM: Historical Background, Introduction to manufacturing System, Classification of manufacturing system, overview of classification scheme, manufacturing progress functions.	2
п	Computer Aided Process Planning (CAPP): Traditional Process Planning,Retrieval process planningsystem, Generative Process Planning, Machinability data systems, computer generated timestandards.	8
III	Group Technology (GT): Introduction, part families, part classification and coding, codingsystem and machining cells. Introduction to Product data Management System (PDM) Computer Aided Production Management Systems (CAPM): Introduction to computer aided PPC, Introduction to computer aided inventory management, manufacturing resource planning (MRPII), computer processmonitoring and shop floor control, and computer process control.	4
IV	Computer Aided Quality Control (CAQ); Computer in quality control, Off-Line and On-Line Quality control, Automated inspection, contact inspection methods, Non contact inspection methods: optical and non opticalcomputer aided testing. Overview of automatic identification methods. Flexible manufacturing systems (FMS). Types of FMS, Flexibility in manufacturing, FMS components, FMS applications and benefits.	5
v	Product Design and CAD/CAM in the production system: Introductory concepts Product design and CAD, CAM,CAD/CAM and CIM Collaborative Engineering; Introduction, Faster Designthroughput, Web based design, Changing design approaches, extended enterprises, concurrentengineering, Agile and lean manufacturing.	4
	TOTAL	40

TEX	KT BOOK			
1	Mikell P. Groover, , Automation, Production Systems, and Computer-			
–	Integrated Manufacturing, 3rd ed., Pearson/Prentice Hall,			
REF	ERENCE BOOKS			
		Year of		
SIN	Name of Authors / Books / Publisher			
1	James A. Rehg and Henry W. Kraebber, Computer-Integrated	2005		
	Manufacturing, 3rd ed., Pearson/Prentice Hall,			
2	Nanua Singh, Systems Approach to Computer-Integrated Design and	1996		
	Manufacturing, John Willey & Sons.			
3	Computer Aided Manufacturing, Chang, Wysk and Wang, Pearson	2008		
	Education			
4	CAD/CAM: Principles and Applications, P.N. Rao, McGraw Hill	2003		
5	Computer Control of Manufacturing Systems, Y. Koren, McGraw Hill	2009		
6	Computer aided Manufacturing, Rao, Tiwari and Kundra, Tata McGraw	2002		
	Hill.			
7	Computer Numerical Control: Machining and Turning Centres, Quesada	2007		
	and Jeyepoovan, PearsonEducation			

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 51
Page 45
Approved
Dean, FA & UD

7PIU5.1: MODELING AND SIMULATION

B.Tech. (P&I) 7th semester 3L+OT

UNIT	CONTENTS	CONTACT HOURS
I	Physical modeling : Concept of system and environment, continuous and discrete system, linear and nonlinear system, stochastic activities, static and dynamic models, principles used in modeling, Basic simulation modeling,	4
	Role of simulation in model evaluation and studies, Advantages and Disadvantages of simulation. Modeling of Systems, iconic analog. Mathematical Modeling	4
п	Computer system simulation: Technique of simulation, Monte Carlo method, experimental nature of simulation, numerical computation techniques, continuous system models, analog and hybrid simulation, feedback systems,	4
	Buildings simulation models of waiting line system, Job shop, material handling and flexible manufacturing systems	4
III	Probability concepts in simulation: Stochastic variables, discrete and continuous probability functions, random numbers, generation of random numbers,	4
	Variance reduction techniques, Determination of the length of simulation runs, Output analysis.	4
IV	System dynamics modelling: Identification of problem situation, preparation of causal loop diagrams and flow diagrams, equation writing, level and rate relationship.	5
	Simulation of system dynamics model.	3
v	Verification and validation: Design of simulation experiments, validation of experimental models, testing and analysis.	4
v	Simulation languages comparison and selection, study of SIMULA,	4
	TOTAL	40

TEX	IT BOOK	
1	Simulation Modeling and Analysis, Law A.M., McGraw Hill.	
REF	TERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Discrete-Event System Simulation, Banks and Carsan, Prentice Hall of India	
2	Simulation Modeling and Analysis with ARENA, Altiok and Melamed, Academic Press	
3	Simulation with ARENA, Keltan, Sadowski and Turrock, McGraw Hill	
4	Simulation Modeling and ARENA, Rossetti and Taha, John Wiley and Sons	
5	Dynamic Systems: Modeling, Analysis and simulation, Finn Hangen, Tapir Academic Press	

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering Approved 2017-18 page no.: 52 Dean, FA & UD (Zalala

Page 46

7PIU5.2: SUPPLY CHAIN MANAGEMENT

B.Tech. (P&I) 7th semester

3L+OT	3L+01	•
-------	-------	---

Contents	Contact Hours
Introduction to Supply Chain Management: Supply chain – objectives – importance – decision phases – process view – competitive and supply chain strategies – achieving strategic fit – supply chain drivers – obstacles – framework – facilities –	1
inventory – transportation – information – sourcing -pricing	7
Designing the supply chain Network: Designing the distribution network – role of distribution – factors influencing distribution – design options – e-business and its	
impact – distribution networks in practice design in the supply chain – role of	
Designing and alarming for the network design decisions	4
and their performance – transportation infrastructure and policies - design options and their trade-offs – Tailored transportation.	4
Sourcing & pricing Sourcing – In-house or Outsource – 3rd and 4th PLs – supplier scoring and assessment, selection – design collaboration – procurement process – sourcing planning and analysis. Pricing and revenue management for multiple	
Customers, perishable products, seasonal demand, bulk and spot contract.	4
Chain Management, Logistics: Introduction, Nature and Concepts, Evolution; Supply Chain Management, Logistical Mission and Objectives; Components and Functions of Logistics Management; Integrated Logistics Management; Key Distribution- Related issues and Challenges and Strategic Logistics Management; Total Cost Analysis and Trade-off	3
Inventory Management: Introduction Concept types Functions: Elements of	0
Inventory Management Infordetent, Concept, types, Functions, Elements of Inventory Costs; Inventory Management under certainty, Managing Finished Products Inventory under Uncertainty, Strategic Inventory Management Tools and	
Second Chain Late metions later desting much well and much well exclamation much	3
- based supply chains – pull – based supply chain – push-pull supply chain - identifying the appropriate supply chain strategy – implementing a push-pull	2
Strategy – demand – driven – strategies – the impact of the internet on supply chain	3
shipment – centralized versus decentralized control – central versus local facilities.	
Decision-support systems for supply chain management: Introduction – the	
challenges of modeling – structure of decision support systems – input data –	
analytical tools – presentation tools – supply chain decision – support systems.	
	40

ТЕХ	T BOOK	
1 D	onald J Bowersoy & David J Closs, Logistical Management TataMcGrawHill	
2 R	P Mohanty & S G Deshmukh, Supply Chain Management- Theories & Practice	
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Pub. Year
1	Sunil Chopra, Supply Chain ManagementPub: Peter Meindi	
2	Badi N V , Supply chain Management Pub : Vrindra Publications (P) Ltd. , Delhi	
3	Sunil Sharma , Supply Chain Management- Concept, Practice & Implementation Pub: Oxford Univ. Press	
4	Sople- Logistics Management-Pub Pearson edition-2013	
5	Desai K D – Six Sigma, Pub. Himalaya Publishing house	
6	Ray & Ruben- Stores Management, Pub. Himalaya Publishing House	

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 53 182000

Page 47 And K. Mathus

Approved Dean, FA & UD

7PIU5.3: RAPID PROTOTYPING

B.Tech. (P&I) 7th semester 3L+0T

Contents	Contact Hours
Overview of Rapid Product Development (RPD). Product Development Cycle;	3
Definition of RPD; Components of RPD. Rapid Prototyping (RP); Principle of RP;	
Technologies and their classifications;	4
Selection of RP process; Issues in RP; Emerging trends.	4
Rapid Tooling (RT);Introduction to RT, Indirect RT process-Silicon rubber	
molding, Epoxy tooling, Spray metal tooling and Investment Casting, Direct RT	
processes-Laminated Tooling, Powder Metallurgy based technologies, Welding	
based technologies, Direct pattern making (Quick Cast, Full Mold Casting),	4
Emerging Trends in RT, Reverse Engineering: Geometric data acquistion,3D	
reconstruction, Applications and Case Studies, Engineering applications, Medical	
applications.	3
Processing Polyhedral Data: Polyhedral BRep modeling, STL format, Defects and	
repair of STL files,	3
Overview of the algorithms required for RP&T and Reverse Engineering-slicing,	
support generation, feature recognisation etc.	3
TOTAL	40

ТЕХ	KT BOOK	
1	C.K. Chua, K.F. Leong, C.S. Lim, Rapid Prototyping: Principles And	2008
	Applications, World Scientific Publishing Co Pte Ltd; 3rd Revised	
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
2	Ali K. Kamrani , Emad Abouel Nasr, Rapid Prototyping: Theory And Practice	2006
	(Manufacturing Systems Engineering Series) ,Springer-Verlag New York Inc	
3	Stucker, David W. Rosenand Ian Gibson, Additive Manufacturing	2014
	Technologies: 3D Printing, Rapid Prototyping, And Direct Digital	
	Manufacturing, Springer New York.	
4	Neil Hopkinson, Richard Hague, Philip Dickens, Rapid Manufacturing: An	2005
	Industrial Revolution For The Digital Age 1st Edition, Wiley New York;	
5	Chee Kai Chua, Kah Fai Leong, 3d Printing And Additive Manufacturing:	, 2014
	Principles And Applications, Fourth Edition Of Rapid Prototyping, World	
	Scientific Publishing Company;	

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 54

Page 48 Approved

7PIU11: METAL FORMING AND TOOL DESIGN LAB.

B.Tech. (P&I) 7th Semester

SN	NAME OF EXPERIMENT
Perfo	rm any ten experiments from the list given below
1	Study of the effect of clearance and shear angle on the blanking and piercing
	operations
2	To determine the effect of percentage of reduction and the semi-cone angle of the die
	on the drawing load.
3	To find the effect of percentage of reduction and the die geometry on extruding force.
4	Experimental determination of wire drawing force for wire drawing operation.
5	Study of the drop forging operation (flowability, forging load etc by plasticine model.
6	To determine roll load in the sheet rolling process.
7	Students will be given at least one practical problem regarding the design and
	fabrication of Jigs & Fixture or Press tool.
8	Working drawings of the following:- Drilling Jigs (Box type, Leaf type, Indexing type,
	Trunion type etc.), Milling Fixtures, Grinding fixtures, Assembly and welding fixtures
	(for automobile components and frames etc.), Drawing Dies, Bending Dies,
	Compound Dies, Combination Dies & Progressive Dies.
9	Determination of true stress true strain relationship.
10	To mount die assembly on power press and produce the desired blanks.
11	To mount forming die assembly and to form a cup of M S Sheet.
12	Study of sheet gauges and sheet metal working machines and preparing a funnel
	using shear, circle cutting machine, ending rollers and spot wring machine.
13	Determine the drawing force component during wire drawing operation using wire
	drawing dynamometer.

7PIU12: CIMS Lab(CAM, IE & SIMULATION Practicals) B.Tech. (P&I) 7th Semester

CN	NAME OF FYDEDIMENT
SI	
1	To prepare part programming for plain turning operation.
2	To prepare part program for turning operations using turning cycle.
3	To prepare part program for threading operation.
4	Toprepare part program for gear cutting using mill cycle.
5	To prepare part program for multiple drilling in X and Z axis using drilling cycle.
	Case Study on the following:
1	Work Methods Design
2	Process Control Charts
3	Materials Management
4	Capacity Planning
	Simulation experiments
1	Generate Pseudo Random No. using different Techniques
2	Develop an Analytical Model for a given physical system
3	Develop a Monte-Carlo Simulation Model for a given physical system
4	Find a area of an irregular 2-D shape using Monte-Carlo Simulation
5	Find the effectiveness of simulation on a physical Stochastic System
6	Develop an algorithm for a selected Simulated Study and write the program in a high
	level language.
7	Modeling of manufacturing system using simulation software such as ARENA

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19

Page 49 Airl K. Mathus Approved

8PIU1.1: NEW ENTERPRISE AND INNOVATION MANAGEMENT B.Tech. (P&I) 8th semester 3L+OT

Unit	CONTENTS	Contact Hours
I	Entrepreneurship: Entrepreneurship and enterprise: Concept, role in economic development. Entrepreneurial competencies: awareness, assessment and development. Simulation exercise on goal setting in entrepreneurship. Entrepreneurial & Intrapreneurial mind. International entrepreneurship opportunities. Starting the venture: Generating business idea – sources of new ideas, methods of generating ideas, creative problem solving, opportunity recognition; environmental scanning, competitor and industry analysis; feasibility study – market feasibility, technical/operational feasibility, financial feasibility.	8
п	Business Plan: Emerging Business Opportunities-sources & assessment. Business Plan: Concepts, Methods, analysis & interpretation. Functional plans: Marketing plan – marketing research for the new venture, steps in preparing marketing plan, contingency planning; organizational plan – form of ownership, designing organization structure, job design, manpower planning; Financial plan: cash budget, working capital, proforma income Statement, proforma cash flow, proforma balance sheet, break even analysis.	7
III	Sources of finance: Sources of external finance, short term as well as long term, Debt or equity financing, commercial banks, venture capital; financial institutions supporting entrepreneurs; legal issues –intellectual property rights patents, trade marks, copy rights, trade secrets, licensing; franchising.	8
IV	Start Up: Institutional support to start up and incentives for SSI. Statutory obligation in starting a unit (general like Income Tax, VAT, CST or GST, Service tax, excise and customs, labour laws, etc. Start up strategies. Dealing with outside agencies like consultant, contractors, etc. Key marketing issue of new venture. Starting a franchising business. Starting an e-commerce venture. Buying arunning business. Managing growing venture: Growth, objective and strategy. Managing growth. Assessing resource from external sources, for financing growth including public issue, merger, amalgamation, joint venture, collaboration & selling business.	8
v	Innovation Management: an introduction, organizational setups that facilitate innovations. Management of research and development. Strategic alliances and network. Insubators and Accelerators	7
	TOTAL	40

TEXT BOOK

1 Hisrich, Robert D., Michael Peters and Dean Shephered, Entrepreneurship, Tata McGraw Hill,New Delhi.

REFERENCE BOOKS

Name of Authors /Books /Publisher

- 1. Barringer, Brace R., and R., Duane Ireland, Entrepreneurship, Pearson Prentice Hall, New Jersy, USA.
- 2. Lall, Madhurima, and Shikha Sahai, Entrepreneurship, Excel Book, New Delhi.
- 3. Charantimath, Poornima, Entrepreneurship Development and Small Business Enterprises, Pearson
- 4. Paul Trot, Innovation Management and New Product Development, Pearson Education
- 5. P Narayana Reddy, Entrepreneurship : Text and Cases, Cengage
- 6. Murdick, Ross & Claggett. Information Systems for Modern Management,. PHI of India.

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 General The mainten and and the state

Page 50 - And K. Mathurs Approved

Dean, FA & UD

Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 56

8PIU1.2: ENGINEERING OPTIMIZATION

B.Tech. (P&I) 8th semester 3L+0T

UNIT	CONTENTS	CONTACT HOURS
I	Introduction - Engineering Applications of Optimization-Statement of an Optimization Problem-Classification of Optimization Problems- Optimization Techniques	5
п	Classical Optimization Techniques -Single-Variable Optimization- Multi variable Optimization with No Constraints-Multivariable Optimization with Equality Constraints- Multivariable Optimization with Inequality Constraints- Transportation	4
III	Nonlinear Programming I : 1DMinimization Methods-Unimodal Function, Elimination Methods-Unrestricted Search, Exhaustive, Dichotomous Search- Interval Halving Method- Fibonacci Method- Golden Section Method, Interpolation Methods-Quadratic, Cubic Interpolation Method - Direct Root Methods-Newton Method-Quasi- Newton, Secant Method	7
IV	Nonlinear Programming II : Unconstrained Optimization Techniques- Direct Search Methods- Indirect Search (Descent) Methods, Non- linear Programming III: Constrained Optimization Techniques- Direct Methods-Indirect Methods, Geometric Programming, Dynamic Programming, Integer Programming –Integer Linear Programming - Stochastic Programming.	4
v	Modern Methods of Optimization - Genetic Algorithms-Simulated Annealing-Particle Swarm Optimization- AntColony Optimization- Optimization of Fuzzy Systems- Neural- Network- Based Optimization, Practical Aspects of Optimization	4
	TOTAL	40

TEXT BOOK		
1	Kalyanmoy Deb, "Optimization for Engineering design –algorithms & examples", PHI, New Delhi	1995
REF	TERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Singiresu S.Rao, "Engineering optimization– Theory and practices", John Wiley and Sons,	1998.
2	Garfinkel, R.S. and Nemhauser, G.L., "Integer programming", John Wiley & Sons,	1972.

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 57

Page 51 Approved

8PIU2.1: PRODUCT DEVELOPMENT AND LAUNCHING B.Tech. (P&I) 8th semester

3L+0T

Unit	Contents	Contact Hours
I	Importance of New Product: Definition-importance-Development	
	Process, Importance of new product for growth of enterprise, Definition of	•
	product and new product,	2
	development team Classification of products from new product	
	development point of view- Need based/Market pull products Tech push	
	Platform based, Process based and customized products,	3
	New product development process and organization, Generic product	
	development process for Market Pull Products, Modification of this process	
	for other types of products.	3
	Need Analysis: Problem Formulation Establishing economic existence of	-
II	need, Need Identification and Analysis, Engineering Statement of Problem,	8
	Establishing Target Specification.	
	Generation of Alternatives and Concept Selection: Concept generation-	
	criticism and Psychological set	4
III	Tools of creativity like brain storming. Analogy, Inversion etc., Creative	•
	thinking Process, Concept feasibility and Concept Selection, Establishing	
	Engineering Specification of Products.	4
	Preliminary and Detailed Design: Design Review Preliminary design-	
	Identification of subsystems, Subsystem specifications, Compatibility,	-
IV	Detailed design of subsystems, component design,	6
	Preparation of assembly drawings, Review of product design from point of	•
	View of Manufacturing, Ergonomics and aesthetics.	2
	Management's Challenges Maintaining focus Promotion of Right Culture	
	Management of Creativity, Top Management attention, Design Team	
V	Staffing and Organization, Setting key mile stone, Identification of Risk	
	Areas, Project Execution and Evaluation Product Launch Strategies,	
		8
	TOTAL	40

TEX	T BOOK	
1	Product Design and Manufacturing, Chitale and Gupta. McGraw Hill.	
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Product Design and Development, Ulrich and Eppinger, McGraw Hill	2003
2	Project Management in New Product Development, Barkley B.T., Tata McGraw Hill.	2008
3	Product Management, Anandan C., McGraw Hill.	2009
4	Engineering Design Methods, Cross, Nigel, John Wiley and Sons.	1995
5	Product Design and Manufacture, Lindbeck, J.R., Prentice Hall of India.	1995

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 58
Page 52 Approved Dean, FA & UD

8PIU2.2: MECHATRONICS AND MEMS

B.Tech. (P&I) 8th semester 3L+1T

Unit	CONTENTS	Contact Hours
Ι	Overview of Mechatronics : Historical perspective, Definition, Applications, Block diagram of Mechatronic system, Functions of Mechatronics Systems, Systems Engineering, Verification Vs Validation, Benefits of mechatronics in manufacturing	2
	Electrical and Electronic Systems: Electrical circuits and Kirchhoff's laws, Network Theorems and AC circuit Analysis, Transformers, Analog Devices, Signal Conditioning, Digital Electronics, Data Acquisition systems.	3
п	Modeling, Analysis and Control of Physical Systems: Basics of System Modeling: LTI and LTV systems, Need for modeling, Types of modeling, Steps in modeling, Building blocks of models, Modelling of one and two degrees of freedom systems, Modeling of Electro-mechanical systems, Mechanical Systems, Fluid systems, Thermal systems; Dynamic Responses, System Transfer Functions, State Space Analysis and System Properties, Stability Analysis using Root Locus Method, Stability Analysis using Bode Plots, PID Controllers (with and without Time Delay)	3
ш	Sensors and Actuators : Static characteristics of sensors and actuators, Position, Displacement and Proximity Sensors, Force and torque sensors, Pressure sensors, Flow sensors, Temperature sensors, Acceleration sensors, Level sensors, Light sensors, Smart material sensors, Micro and Nano sensors, Selection criteria for sensors, Actuators: Electrical Actuators (Solenoids, Relays, Diodes, Thyristors, Triacs, BJT, FET, DC motor, Servo motor, BLDC motor, AC motor, Stepper motors), Hydraulic and Pneumatic actuators, Design of Hydraulic and Pneumatic circuits, Piezoelectric actuators, Shape memory alloys.	4
IV	Microprocessors, Microcontrollers and Programmable Logic Controllers : Logic Concepts and Design, System Interfaces, Communication and Computer Networks, Fault Analysis in Mechatronic Systems, Synchronous and Asynchronous Sequential Systems, Architecture, Microcontrollers, Programmable Logic Controllers (PLCs): Architecture, Number Systems Basics of PLC Programming, Logics, Timers and Counters, Application on real time industrial automation systems.	5
V	Micro-Electro Mechanical Systems (MEMS): History, Effect of scaling, Fabrication techniques: Oxidation, Sputter disposition, CVD, Lithography, Etching, Wafer bonding, LIGA, DRIE, Applications: Lab on chip	5
v	Case Studies : Design of pick and place robot, Car engine management system, Automated manufacturing system, Automatic camera, Automatic parking system, Safety devices and systems.	3
	TOTAL	40

TEX	TEXT BOOK	
1	W.Bolton, Mechatronics, Electronic control systems in mechanical and electri	2004
	calengineering, PearsonEducation, 5/e, 2011.	
REI	FERENCE BOOKS	
ON	Name of Authors /Books /Dublisher	Pub
51	Name of Authors / Books / Fubisher	Year .
2	JamesJAllen, MicroElectroMechanicalSystemsDesign, CRCPress.	2013
3	DavidG.AlcaiatoreandMichelB.Histand,IntroductiontoMechatronicsandMeas	2006
	uringSystems,Mc.GrawHillInt.Edition,3/e,	
4	CraigK.C.andStolfi,F.R.,IntroductiontoMechatronicSystemDesignwithAppli	1994
	cations,IEEEEducationalActivitiesDepartment,.	
5	RobertH.Bishop.TheMechatronicsHandbook, CRCPress,2/e	2007

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 59

-19 Page 53 And K. Mathur

Approved Dean, FA & UD

8PIU3.1: NON DESTRUCTIVE EVALUATION AND TESTING B.Tech. (P&I) 8th semester 3L+OT

UNIT	CONTENTS	CONTACT HOURS
-	Introduction : An Overview, Factors influencing the Reliability of NDE, Defects in materials, Defects in composites. NDT methods used for evaluation of materials and composites.	3
1	Visual Inspection: Basic Principle and Applications.	2
	Liquid Penetrant Testing: Principle, Procedure and Test Parameters, Materials, Limitations and Applications.	3
п	Radiographic Inspection: Principles of X – ray radiography, equipment, Absorption, Scattering, X-ray film processing, General radiographic procedures, Reading and Interpretation of Radiographs, Industrial radiographic practice, Limitations and Applications, Welding defects detection. Gamma ray radiography.	8
III	Ultrasonic Testing: Principle of wave propagation, Ultrasonic equipment, Variables affecting an ultrasound test, Basic methods: Pulse Echo and Through Transmission, Types of scanning.	5
	Applications of UT: Testing of products, Welding Inspection, Tube Inspection, Thickness Measurement, Elastic Constant Determination, Ultrasonic testing of composites.	3
IV	Magnetic Particle Inspection: Methods of generating magnetic field, Demagnetization of materials, Magnetic particle test: Principle, Test Equipment and Procedure, Interpretation and evaluation.	5
	Introduction to Accostic Emission Testing and Thermography.	3
v	Eddy Current Testing: Principle of eddy current, Factors affecting eddy currents, Test system and test arrangement, Standardization and calibration, Application and effectiveness.	5
	Comparison and Selection of NDT Methods, Codes and Standards	3
	TOTAL	40

TEX	IT BOOK	
1	Baldev Raj, T. Jay Kumar, M. Thavasimuthu, Practical Non-Destructive Testing,	
	Narosa.	
REF	ERENCE BOOKS	
SN	Name of Authors /Books /Bublisher	Year of
SN	Name of Authors / Books / Fublisher	Pub.
1	Loius Cartz, Non Destructive Testing, ASM International	1995
2	J PRASAD, C G K NAIR, NDT & Evaluation Of Materials, TMH	2008
3	R. Halmshaw, Introduction to the Non-Destructive Testing of Welded Joints,	1997
4	American Metals Society, Non-Destructive Examination and Quality	1989
	Control, Metals Hand Book, Vol.17, 9th Ed.	

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 60

Page 54

Approved Dean, FA & UD

8PIU3.2: FUEL CELL AND HYBRID ENGINE TECHNOLOGY B.Tech. (P&I) 8th semester

UNIT	CONTENTS	CONTACT HOURS
I	Introduction and types of Fuel cell: Introduction : the rational behind fuel cell development, basic principle of fuel cell, operational of fuel cell, efficiency of fuel cell, co generation of heat and power, important reaction such as hydrogen oxidation, methonal oxidation etc	3
	Types of fuel cell: DMFC (direct methanol fuel cell),PAFC (phosphoric acid fuel cells), MCFC (molten carbonate fuel cells), SOFC (solid oxide fuel cells)	4
п	Fuel processing and application of fuel cells: Fuel processing- general, producing hydrogen from alcohol, producing hydrogen from hydrocarbon, hydrogen from other sources, Gas cleanup, reformer system, hydrogen storage system Engineering	6
III	fuel cell engineering, vehicle cell design, stack engineering fuel processing system application: stationary power, propulsion of vehicle, portable application	4
	Electric Vehicle: Introduction, working. Electric car motors, electric car batteries, charging system of electric car, magna charge system. conversion system for transmission.	6
IV	Hybrid vehicle: Introduction, working. Power split devices. Hybrid car performance, gasoline hybrid structure. Gasoline Vs electric power	6
	Transmission components of hybrid vehicle. Advantage and limitation. Different types of hybrid vehicle.	4
v	Solar Vehicles: Introduction and working, photovoltaic cell, solar cell. Energy lose in solar cell. Solar powering house. Solar cost, anatomy of solar cells	7
	TOTAL	40

TEXT BOOK		
1	Electric and Hybrid Vehicles: Design Fundamentals, Second Edition, By	2009
	Iqbal Husain, CRC press	
REFERENCE BOOKS		
SN	Name of Authors /Books /Publisher	Year of Pub.
1	Fuel cell technology, N. Sammes, Springer	2012
2	Microbial Fuel Cell, Bruce E. Logan, Willey publication	2008
3	Principle of Fuel Cell, Xiangeo Li, CRC Press	2006
4	Hydrogen fuel cells for road vehicles, corbo et.al, springers	2007
5	Electrical vehicle technology, James laraminie, Wiley	2008

B.Tech. P & I E syllabus for University Teaching Dept, RTU, Kota. Effective from 18-19 Scheme & Syllabus: Production & Industrial Engineering 2017-18 page no.: 61 Page 55 Approved Dean, FA & UD

Page 55