

UNIVERSITY DEPARTMENTS, RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Scheme of

UNDERGRADUATE DEGREE COURSE

in

Electronics & Communication Engineering

University Departments, Rajasthan Technical University, Kota Effective from session: 2018 – 2019 (For students admitted in session 2017-18 onwards)

Sr.	Course	Type of	Course Title	Credits	Hour	·s/\	Neek		Mark	(S
No.	Code	Course		orconts	L	Т	Р	IA	ETE	Total
1	3ECU1	ICC	Advanced Engineering Mathematics-I	4	3	1	0	50	100	150
2	3ECU2	DCC	Electronics Devices	4	3	1	0	50	100	150
3	3ECU3	DCC	Digital System Design	3	3	0	0	50	100	150
4	3ECU4	DCC	Signal & Systems	3	3	0	0	50	100	150
5	3ECU5	DCC	Network Theory	3	3	0	0	50	100	150
6	3ECU6	DCC/IEC	Technical Communication	2	2	0	0	50	100	150
7	3ECU11	DCC	Electronics Devices Lab	2	0	0	3	50	25	75
8	3ECU12	DCC	Digital System Design Lab	1	0	0	2	50	25	75
9	3ECU13	DCC/IEC	Signal Processing Lab	1	0	0	2	50	25	75
10	3ECU14	DCC/IEC	Computer Programming Lab- I	1	0	0	2	50	25	75
11	3ECU20		Extra Curricular& Discipline	1				50		50
			TOTAL	25	17	2	09	550	750	1250

2nd Year: Electronics & Communication Engineering III Semester

AnApproved Dean, FA & UD

2nd Year: Electronics & Communication Engineering IV Semester

Sr.	Course Code	Type of	Course Title	Credits	Но	urs. ek	/We		Marl	٢S
No.		Course			L	т	Ρ	IA	ET E	Total
1	4ECU1	ICC	Advanced Engineering Mathematics-II	4	3	1	0	50	100	150
2	4ECU2	DCC	Analog Circuits	4	3	1	0	50	100	150
3	4ECU3	DCC	Microcontrollers	3	3	0	0	50	100	150
4	4ECU4	DCC	Electronics Measurement & Instrumentation	3	3	0	0	50	100	150
5	4ECU5	DCC	Analog and Digital Communication	3	3	0	0	50	100	150
6	4ECU6	DCC/IEC	Managerial Economics and Financial Accounting	2	2	0	0	50	100	150
7	4ECU11	DCC	Analog and Digital Communication Lab	2	0	0	3	50	25	75
8	4ECU12	DCC	Analog Circuits Lab	2	0	0	3	50	25	75
9	4ECU13	DCC/IEC	Microcontrollers Lab	1	0	0	2	50	25	75
10	4ECU14	DCC/IEC	Electronics Measurement & Instrumentation Lab	1	0	0	2	50	25	75
11	4ECU20		Extra-Curricular & Discipline	1		<u> </u>	50		50	
			TOTAL	26	17	2	10	550	750	1250

Amel K. Mathus Approved Dean, FA & UD

3rd Year: Electronics & Communication Engineering V Semester

Sr.	Course Code	Type of	Course Title	Credits	Ho	urs ek	/We		Marks			
No.		Course			L	т	Ρ	IA	ET E	Total		
1	5ECU1	DCC	Electromagnetics Waves	4	3	1	0	50	100	150		
2	5ECU2	DCC	Control system	4	3	1	0	50	100	150		
3	5ECU3	DCC	Digital Signal Processing	3	3	0	0	50	100	150		
4	5ECU4	DCC	Microwave Theory & Techniques	3	3	0	0	50	100	150		
5	5ECU5.1	DEC	Probability Theory & Stochastic Process	3	3	0	0	50	100	150		
	5ECU5.2		Embedded Systems									
6	5ECU6.1	DEC	Bio-Medical Electronics	2	2	0	0	50	100	150		
	5ECU6.2		Satellite Communication			-	_					
7	5ECU11	DCC	RF Simulation Lab	2	0	0	3	50	25	75		
8	5ECU12	DCC	Digital Signal Processing Lab	1	0	0	2	50	25	75		
9	5ECU13	DCC	Microwave Lab	1	0	0	2	50	25	75		
10	5ECU14	DCC/IEC	PCB Design lab/EC workshop	1	0	0	2	50	25	75		
11	5ECU20		Extra Curricular& Discipline	1				50		50		
			TOTAL	25	17	2	09	550	750	1250		

Amel K. Mathus Approved Dean, FA & UD

3rd Year: Electronics & Communication Engineering VI Semester

Sr.	Course Code	Type of	Course Title	Credits	Но	urs ek	/We		Marl	٢S
No.		Course			L	т	Ρ	IA	ET E	Total
1	6ECU1	DCC	Computer Network	4	3	1	0	50	100	150
2	6ECU2	DCC	Fiber Optics Communications431050100Antennas and Propagation330050100							150
3	6ECU3	DCC	Antennas and Propagation	3	3	0	0	50	100	150
4	6ECU4	DCC	Information theory and coding	3	3	0	0	50	100	150
5	6ECU5.1	DEC	Introduction to MEMS	3	3	0	0	50	100	150
	6ECU5.2		Nano Electronics							
6	6ECU6.1	DEC	Power Electronics	2	2	0	0	50	100	150
	6ECU6.2		High Speed Electronics							
7	6ECU11	DCC	Computer Network Lab	2	0	0	3	50	25	75
8	6ECU12	DCC	Antenna and wave propagation Lab	2	0	0	3	50	25	75
9	6ECU13	DCC	Electronics Design Lab	1	0	0	2	50	25	75
10	6ECU14	DCC/IEC	Power Electronics Lab	1	0	0	2	50	25	75
11	6ECU20		Extra-Curricular & Discipline	1				50		50
			TOTAL	26	17	2	10	550	750	1250

An Approved Dean, FA & UD

4th Year: Electronics & Communication Engineering VII Semester

Sr.	Course Code	Type of			Но	urs ek	/We		Marks			
No.		Course			L	Т	Ρ	IA	ET E	Total		
1	7ECU1	DCC	CMOS Design	4	3	1	0	50	100	150		
2	7ECU2	DCC	Digital Image and Video Processing	4	3	1	0	50	100	150		
3	7ECU3	DCC	Mobile Communication and Network	3	3	0	0	50	150			
4	7ECU4	DCC	Mixed Signal Design	3 3 0 0 50						150		
_	7ECU5.1		Error Correcting Codes									
5	7ECU5.2	DEC	Neural Network And Fuzzy Logic Controller	3	3	0	0	50	100	150		
6	7ECU11	DCC	VLSI Design Lab	2	0	0	3	50	25	75		
7	7ECU12	DCC	Optical fibre lab	1	0	0	2	50	25	75		
8	7ECU13	DCC	Minor project	1	0	0	2	50	25	75		
9	7ECU14	DCC	Practical Training 4 0 0 4 150		75	225						
10	7ECU20		Extra-Curricular & Discipline	1				50		50		
			TOTAL	26	15	2	11	600	650	1250		

And K. Mathus

Approved Dean, FA & UD

4th Year: Electronics & Communication Engineering VIII Semester Option-A

Sr.	Course Code	Type of	Course Title	Credits	Но	urs ek	/We		Marl	٢S
No.		Course			L	Т	Ρ	IA	ET E	Total
1	8ECU1.1	DEC	Speech and audio processing	3	3	0	0	50	100	150
	8ECU1.2		Artificial intelligence							
2	8ECU2.1	DEC	Adaptive Signal Processing	3	3	0	0	50	100	150
	8ECU2.1		Wavelets							
3	8ECU3.1	DEC	Wireless Sensor Network	3	3	0	0	50	100	150
	8ECU3.2		Scientific Computing							
4	8ECU13	DCC	Seminar	4	0	0	4	150	75	225
5	8ECU14	DCC	Project	12	0	0	18	350	175	525
6	8ECU20		Extra-Curricular & Discipline	1				50		50
			TOTAL	26	9	0	22	700	550	1250

Amel K. Mathus Approved Dean, FA & UD

4th Year: Electronics & Communication Engineering VIII Semester Option-B*

1	8ECU13	DCC	Seminar	4			4	150	75	225
2	8ECU14	DCC	Project Cum Internship	21			36 hours per week	500	475	975
3	8ECU20		Extra-Curricular & Discipline	1				50		50
			TOTAL	26	0	0	40	700	550	1250

*In VIII semester, option-B be given (on Choice) to the student having CGPA \geq 8.0 calculated up to the VI semester B.Tech. results.

Amel K. Mathurs

Approved Dean, FA & UD

3ECU1 ICC Advance Engineering Mathematics-I	MM:150	3L:1T:0P	4 credits
--	--------	----------	--------------

Numerical Methods – 1: (10 lectures)

Finite differences, Relation between operators, Interpolation using Newton's forward and backward difference formulae. Gauss's forward and backward interpolation formulae. Stirling's Formulae. Interpolation with unequal intervals: Newton's divided difference and Lagrange's formulae.

Numerical Differentiation, Numerical integration: Trapezoidal rule and Simpson's 1/3rd and 3/8 rules.

Numerical Methods – 2: (8 lectures)

Numerical solution of ordinary differential equations: Taylor's series, Euler and modified Euler's methods. Runge- Kutta method of fourth order for solving first and second order equations. Milne's and Adam's predicator-corrector methods. Solution of polynomial and transcendental equations-Bisection method, Newton-Raphson method and Regula-Falsi method.

Laplace Transform: (10 lectures)

Definition and existence of Laplace transform, Properties of Laplace Transform and formulae, Unit Step function, Dirac Delta function, Heaviside function, Laplace transform of periodic functions. Finding inverse Laplace transform by different methods, convolution theorem. Evaluation of integrals by Laplace transform, solving ODEs by Laplace transforms method.

Fourier Transform: (7 lectures)

Fourier Complex, Sine and Cosine transform, properties and formulae, inverse Fourier transforms, Convolution theorem, application of Fourier transforms to partial ordinary differential equation (One dimensional heat and wave equations only).

Z-Transform: (5 lectures)

Definition, properties and formulae, Convolution theorem, inverse Z-transform, application of Z-transform to difference equation.

Suggested Text/Reference Books

- 1. FranscisScheid, Theory and Problems of Numerical Analysis, Schaum Outline's series.
- 2. S. S. Sastry; Introductory Methods of Numerical Analysis; Prentice Hall India Learning Private Limited.
- 3. M. K. Jain, S. R. K. Iyengar and R. K. Jain; Numerical Methods for Scientific and Engineering Computation; New Age International

il K. Mathus Ãpproved Dean, FA & UD

Publishers.

- 4. Spiegel; Laplace Transforms; Schaum's outline series.
- 5. Erwin kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
- 6. R.K. Jain and S.R.K. Iyengar; Advanced Engineering Mathematics, Narosa Publications.
- B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 35th Edition, 2010.
- 8. Dennis G. Zill and Warren S. Wright; Advanced Engineering Mathematics; Jones & Bartlett Learning.
- 9. Pal and Bhunia, Engineering Mathematics, Oxford, India.
- 10. C.B. Gupta, Engineering Mathematics for semesters III and IV, McGraw Hill Education, India.

l K. Mathur Approved Dean, FA & UD

3ECU2	DCC	Electronic Devices	MM:150	3L:1T:0P	4 credits
-------	-----	--------------------	--------	----------	--------------

Introduction to Semiconductor Physics: Introduction, Energy band gap structures of semiconductors, Classifications of semiconductors, Degenerate and non-degenerate semiconductors, Direct and indirect band gap semiconductors, Electronic properties of Silicon, Germanium, Compound Semiconductor, Gallium Arsenide, Gallium phosphide & Silicon carbide, Variation of semiconductor conductivity, resistance and bandgap with temperature and doping. Thermistors, Sensitors.

Review of Quantum Mechanics, Electrons in periodic Lattices, E-k diagrams. Energy bands in intrinsic and extrinsic silicon; Carrier transport: diffusion current, drift current, mobility and resistivity; sheet resistance, design of resistors.

Generation and recombination of carriers; Poisson and continuity equation P-N junction characteristics, I-V characteristics, and small signal switching models; Avalanche breakdown,

Zener diode, Schottky diode.

Bipolar Junction Transistor, I-V characteristics, Ebers-Moll Model, MOS capacitor, C-V characteristics, MOSFET, I-V characteristics, and small signal models of MOS transistor, LED, photodiode and solar cell.

Integrated circuit fabrication process: oxidation, diffusion, ion implantation, Photolithography, etching, chemical vapor deposition, sputtering, twin-tub CMOS process.

Text/Reference Books:

1.	G. Streetman, and S. K. Banerjee, "Solid State Electronic Devices," 7th
	edition,
	Pearson, 2014.
2.	D. Neamen , D. Biswas "Semiconductor Physics and Devices,"
	McGraw-Hill Education
3.	S. M. Sze and K. N. Kwok, "Physics of Semiconductor Devices," 3rd
	edition, John Wiley & Sons, 2006.
4.	C.T. Sah, "Fundamentals of solid state electronics," World Scientific
	Publishing Co. Inc, 1991.
5.	Y. Tsividis and M. Colin, "Operation and Modeling of the MOS
	Transistor," Oxford
	Univ.Press, 2011.

il K. Mathus Approved Dean, FA & UD

Course Outcome:

Course Code	Course Name	Course Outco me	Details				
		CO 1	Understanding the semiconductor physics of the intrinsic, P and N materials.				
	Devices	CO 2	Understanding the characteristics of current flow in a bipolar junction transistor and MOSFET.				
3ECU2		CO 3	Understand and utilize the mathematical models of semiconductor junctions and MOS transistors for circuits and systems.				
DomSolutionModels of semiconductor junctions and transistors for circuits and systems.CO 4Analyze the characteristics of different electronic devices such as Amplifiers, L Solar cells, etc.							
		CO 5	Theoretical as well as experimental understanding of Integrated circuit fabrication.				

CO-PO Mapping:

Subject	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
	CO 1	3	1		2	1	1						
2 nic es	CO 2	3	2	1			2						
3ECU2 Electronic Devices	CO 3	2	1		2		1	2					
Ele De	CO 4	3	1	1				2					
	CO 5	3	1	1	1	1							2
	3: 5	2	2: Mo	derat	te		1	:We	ak				

Lecture Plan:

Lecture No.	Content to be taught
Lecture 1	Zero Lecture
Lecture 2	Introduction to Semiconductor Physics
Lecture 3	Introduction to Semiconductor Physics

Am Approved Dean, FA & UD

	Introduction to Semiconductor Physics					
Lecture 5	Review of Quantum Mechanics					
	Electrons in periodic Lattices					
	E-k diagrams					
	Energy bands in intrinsic and extrinsic silicon					
Lecture 9	Carrier transport: diffusion current, drift current, mobility and					
	resistivity					
	Sheet resistance and design of resistors					
	Generation and recombination of carriers					
	Poisson and continuity equation					
Lecture 13	P-N junction characteristics and their I-V characteristics					
	P-N junction characteristics and their I-V characteristics					
	P-N junction small signal switching models					
	P-N junction small signal switching models					
	Avalanche breakdown					
	Zener diode and Schottky diode					
Lecture 19	Basics of Bipolar Junction Transistor					
Lecture 20	I-V characteristics of BJT					
	Ebers-Moll Model					
	MOS capacitor					
	MOS capacitor					
	C-V characteristics					
Lecture 25	Basics of MOSFET					
	Basics of MOSFET					
Lecture 27	I-V characteristics of MOSFET					
Lecture 28	Small signal models of MOS transistor					
	Small signal models of MOS transistor					
	Light Emitting Diode					
	Photodiode and solar cell					
Lecture 32	Basics of Integrated Circuits					
Lecture 33	Advancement in Integrated Circuits					
	Oxidation, diffusion and ion implantation					
	Photolithography and etching					
Lecture 36	Chemical vapor deposition					
	Sputtering					
Lecture 38	Twin-tub CMOS process					
	Spill over class					
Lecture 40	Spill over class					

Content delivery method:

- 1. Chalk and Duster
- **2**. PPT
- 3. Hand-outs

Amel K. Mathurs Approved Dean, FA & UD

Sample assignments:

Assignment 1	Q1.	Investigates the input/output characteristics of various diodes?					
	Q2.	Investigate the applications of various diodes?					
	Q3.	A p-type sample of silicon has a resistivity of 5 Ω - cm. In this sample, the hole mobility, $\mu_{h'}$ is 600					
		cm²/V-s and the electron mobility, $\mu_{e'}$ is 1600					
		cm ² /V-s. Ohmic contacts are formed on the ends of the sample and a uniform electric field is imposedwhich results in a drift current density in					
		 the sample is 2 x 10³ A/cm². [1]. What are the hole and electron concentrations in this sample? [2]. What are the hole and electron drift 					
		velocities under these conditions?[3]. What is the magnitude of the electric field?					
Assignment 2	Q1.	Discuss the applications of Ebers-Moll Model.					
	Q2.	Discuss different types of fabrication techniques.					
	Q3.	Discuss various characteristics of CMOS transistor.					

Amel K. Mathur

Approved Dean, FA & UD

3ECU3 DCC Digital System MM:150 3L:0T:0P cre
--

Logic Simplification and Combinational Logic Design: Review of Boolean Algebra and De Morgan's Theorem, SOP & POS forms, Canonical forms, Karnaugh maps up to 6 variables, Binary codes, Code Conversion.

MSI devices like Comparators, Multiplexers, Encoder, Decoder, Driver & Multiplexed Display, Half and Full Adders, Subtractors, Serial and Parallel Adders, BCD Adder, Barrel shifter and ALU

Sequential Logic Design: Building blocks like S-R, JK and Master-Slave JK FF, Edge triggered FF, Ripple and Synchronous counters, Shift registers, Finite state machines, Design of Synchronous FSM, Algorithmic State Machines charts. Designing synchronous circuits like Pulse train generator, Pseudo Random Binary Sequence generator, Clock generation.

Logic Families and Semiconductor Memories: TTL NAND gate, Specifications, Noise margin, Propagation delay, fan-in, fan-out, Tristate TTL, ECL, CMOS families and their interfacing, memory elements, Concept of Programmable logic devices like FPGA. Logic implementation using programmable devices.

VLSI Design flow: Design entry: Schematic, FSM & HDL, different modeling styles in VHDL, Data types and objects, Dataflow, Behavioral and Structural Modeling, Synthesis and Simulation VHDL constructs and codes for combinational and sequential circuits.

Text/Reference Books:

1.	R.P. Jain, "Modern digital Electronics", Tata McGraw Hill, 4th edition, 2009.
2.	Douglas Perry, "VHDL", Tata McGraw Hill, 4th edition, 2002.
3.	W.H. Gothmann, "Digital Electronics- An introduction to theory and
	practice", PHI, 2 nd edition ,2006.
4.	D.V. Hall, "Digital Circuits and Systems", Tata McGraw Hill, 1989
5.	Charles Roth, "Digital System Design using VHDL", Tata McGraw Hill
	2nd edition
	2012.

l K. Mathus Approved Dean, FA & UD

Course Outcome:

Course Code	Course Name	Course Outcome	Details				
3ECU3	Digital System Design	CO 1	Develop the understanding of number system and its application in digital electronics.				
		CO 2	Development and analysis of K-map to solve the Boolean function to the simplest form for the implementation of compact digital circuits.				
		CO 3	Design various combinational and sequential circuits using various metrics: switching speed, throughput/latency, gate count and area, energy dissipation and power.				
		CO 4	Understanding Interfacing between digital circuits and analog component using Analog to Digital Converter (ADC), Digital to Analog Converter (DAC) etc.				
		CO 5	Design and implement semiconductor memories, programmable logic devices (PLDs) and field programmable gate arrays (FPGA) in digital electronics.				

CO-PO Mapping:

Subj ect	Course Outcom es	РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
al gn	CO 1	3	2	2	1		1						
3 Digital n Design	CO 2	3	2	3	2								
	CO 3	2	2	3	1	1							
3ECU3 System	CO 4	3	2	1	1	1							
3I Sy	CO 5	2	1	3	1	1							
	3: 5	Strong	gly	2	2: Mo	derat	te	•	1	:We	ak		1

Lecture Plan:

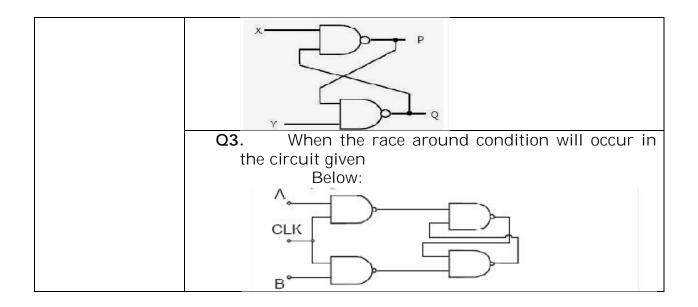
Lecture	Content to be taught					
No.						
Lecture 1	Zero Lecture					
Lecture 2	Review of Boolean Algebra					
Lecture 3	DeMorgan's Theorem, SOP & POS forms,					
Lecture 4	Problem of SOP and POS forms of boolean functions.					
Lecture 5	Simplification of karnaugh map up to 6 variables					
Lecture 6	Simplification of karnaugh map up to 6 variables					
Lecture 7	Simplification of karnaugh map up to 6 variables					
Lecture 8	Binary codes and code conversion					
Lecture 9	Binary codes and code conversion					
	Encoder, Decoder					
Lecture 11	Half and Full Adders, Subtractors, Serial and Parallel Adders					
	BCD Adder, Barrel shifter					
	S-R FF, edge triggered and level triggered					
	D and J-K FF					
Lecture 15	Master-Slave JK FF and T FF					
Lecture 16	Ripple and Synchronous counters					
	Other type of counters					
Lecture 18	Shift registers, Finite state machines, Asynchronous FSM					
	Design of synchronous FSM					
	Design of synchronous FSM					
	Design of synchronous FSM					
Lecture 22	Designing synchronous circuits (pulse train generator, pseudo					
	random binary sequence generator, clock generation)					
Lecture 23	TTL NAND gate, specifications, noise margin, propagation delay,					
	fan-in, fan-out					
	TTL NAND gate					
	Tristate TTL, ECL					
	CMOS families and their interfacing					
	CMOS families and their interfacing					
	Read-Only Memory, Random Access Memory					
	Programmable Logic Arrays (PLA)					
	Programmable Array Logic (PAL),					
	Field Programmable Gate Array (FPGA)					
	Combinational PLD-Based State Machines,					
	State Machines on a Chip					
	Schematic, FSM & HDL					
	Different modeling styles in VHDL					
	Data types and objects, Data flow					
Lecture 37	Behavioral and Structural Modeling					

And K. Mathus

Approved Dean, FA & UD

Lecture 38	Behavioral and Structural Modeling
Lecture 39	Simulation VHDL constructs and codes for combinational and
	sequential circuits
Lecture 40	Simulation VHDL constructs and codes for combinational and
	sequential circuits

Content delivery method:


- 1. Chalk and Duster
- **2**. PPT
- 3. Hand-outs

Sample Assignments:

Assignment 1	Q1 .Using K-maps, find the minimal Boolean						
5	expression of the following SOP and POS						
	representations.						
	a. f (w,x,y,z)= Σ (7,13,14,15)						
	b. $f(w,x,y,z) = \Sigma (1,3,4,6,9,11,14,15)$						
	c. $f(w,x,y,z) = \Pi(1,4,5,6,11,12,13,14,15)$						
	d. $f(w,x,y,z) = \Sigma (1,3,4,5,7,8,9,11,15)$						
	e. f(w,x,y,z) = Π (0,4,5,7,8,9,13,15)						
	Q2. Find the function h(a,b,c,d) such that f = f ^d .						
	$f(a,b,c,d) = a \cdot b \cdot c + (a \cdot c + b) \cdot d + h(a,b,c,d)$						
	Q3. Using K-maps of the functions f1 and f2, find the						
	following: (provide						
	the canonical form expression and simplify)						
	a. $T1 = f1 \cdot f2$ b. $T2 - f1 + f2$						
	b. $T2 = f1 + f2$						
	c. T3 = f1 \oplus f2						
	where $f1(w,x,y,z) = \Sigma (0,2,4,9,12,15), f2(w,x,y,z) =$						
A	Σ (1,2,4,5,12,13)						
Assignment 2	Q1. Draw the state diagram of a serial adder.						
	Q2. In the following circuit, given binary values were						
	applied to the						
	Inputs X and Y inputs of the NAND latch shown						
	in the figure. X = 0, Y = 1; X = 0, Y = 0; X = 1, Y = 1. Find out the						
	corresponding stable output P, Q.						

And K. Mathurs Approved

Dean, FA & UD

And K. Mathus

Approved Dean, FA & UD

3ECU4 DCC Signals & Systems	MM:150	3L:0T:0P	3 credits
-----------------------------	--------	----------	--------------

Energy and power signals, continuous and discrete time signals, continuous and discrete amplitude signals. System properties: linearity: additivity and homogeneity, shift-invariance, causality, stability, realizability.

Linear shift-invariant (LSI) systems, impulse response and step response, convolution, input output behavior with aperiodic convergent inputs. Characterization of causality and stability of linear shift-invariant systems. System representation through differential equations and difference equations

Periodic and semi-periodic inputs to an LSI system, the notion of a frequency response and its relation to the impulse response, Fourier series representation, the Fourier Transform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, Fourier domain duality. The Discrete-Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem. The idea of signal space and orthogonal bases

The Laplace Transform, notion of eigen functions of LSI systems, a basis of eigen functions, region of convergence, poles and zeros of system, Laplace domain analysis, solution to differential equations and system behavior.

The z-Transform for discrete time signals and systems- eigen functions, region of convergence, z-domain analysis.

State-space analysis and multi-input, multi-output representation. The state-transition matrix and its role. The Sampling Theorem and its implications- Spectra of sampled signals.

Reconstruction: ideal interpolator, zero-order hold, first-order hold, and so on. Aliasing and its effects. Relation between continuous and discrete time systems.

Text/Reference Books:

1.	A.V. Oppenheim, A.S. Willsky and I.T. Young, "Signals and Systems",
	Prentice Hall,
	1983.
2.	R.F. Ziemer, W.H. Tranter and D.R. Fannin, "Signals and Systems -
	Continuous and
	Discrete", 4th edition, Prentice Hall, 1998.
3.	Papoulis, "Circuits and Systems: A Modern Approach", HRW, 1980.
4.	B.P. Lathi, "Signal Processing and Linear Systems", Oxford University
	Press, c1998.
5.	Douglas K. Lindner, "Introduction to Signals and Systems", McGraw

And K. Mathus

	Hill International Edition: c1999.
6.	Simon Haykin, Barry van Veen, "Signals and Systems", John Wiley
	and Sons (Asia)
	Private Limited, c1998.
7	Robert A. Gabel, Richard A. Roberts, "Signals and Linear Systems",
	John Wiley and
	Sons, 1995.
8.	M. J. Roberts, "Signals and Systems - Analysis using Transform
	methods and MATLAB", TMH, 2003.
9.	J. Nagrath, S. N. Sharan, R. Ranjan, S. Kumar, "Signals and Systems",
	TMH New Delhi, 2001.
10.	Ashok Ambardar, "Analog and Digital Signal Processing", 2nd Edition,
	Brooks/ Cole
	Publishing Company (An international Thomson Publishing Company),
	1999.

Course Outcome:

Course Code	Course Name	Course Outcom e	Details
		CO 1	Analyze different types of signals and system properties
3ECU4 Systems & CO3		CO 2	Represent continuous and discrete systems in time and frequency domain using different transforms
		CO 3	Investigate whether the system is stable.
CO 4		CO 4	Sampling and reconstruction of a signal.
		CO 5	Acquire an understanding of MIMO systems

CO-PO Mapping:

Subject	Course Outcom es	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
4 ; & ns	CO 1	3	3	1	2	2			1				2
3ECU4 Signals 8 Systems	CO 2	3	1		2	3			1				2
3 Sig Sy	CO 3	3	2	2	3								2

And K. Mathur

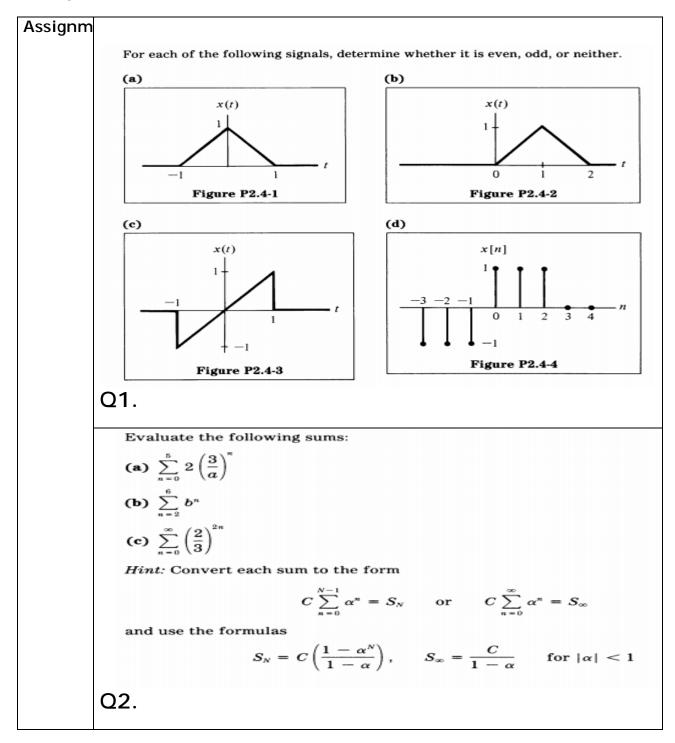
Approved Dean, FA & UD

	CO 4	3	2	3	3	1					
	CO 5	3	2	2	3	1		2			1
<u> </u>	3: Strongly			2	2: Mo	derat	te	1	:We	ak	

Lecture Plan:

Lecture	Content to be taught
No.	······································
Lecture 1	Zero Lecture
Lecture 2	Energy signals power signals
Lecture 3	Continuous and discrete time signals
Lecture 4	Continuous amplitude signals
Lecture 5	and discrete amplitude signals
Lecture 6	System properties: linearity: additivity and homogeneity
Lecture 7	shift-invariance, causality
Lecture 8	stability, realizability.
Lecture 9	Linear shift-invariant (LSI) systems
Lecture 10	impulse response
Lecture 11	Step response
Lecture 12	Convolution.
Lecture 13	Input output behavior with aperiodic convergent inputs
Lecture 14	Characterization of causality and stability of linear shift-invariant
	systems.
Lecture 15	System representation through differential equations and
	difference equations.
Lecture 16	Characterization of causality and stability of linear shift-invariant
	systems.
Lecture 17	System representation through differential equations and
	difference equations.
	Periodic and semi-periodic inputs to an LSI system
	The notion of a frequency response.
	Its relation to the impulse response
	Fourier series representation
	Fourier Transform
Lecture 23	Convolution/multiplication and their effect in the frequency
	domain
	Magnitude and phase response
	Fourier domain duality.
Lecture 26	The Discrete-Time Fourier Transform (DTFT) and Discrete Fourier
	Transform (DFT).
Lecture 27	Parseval's Theorem. The idea of signal space and orthogonal
	bases

Avapproved Dean, FA & UD


Lecture 28	The Laplace Transform
Lecture 29	Notion of eigen functions of LSI systems
Lecture 30	A basis of eigen functions, region of convergence
Lecture 31	Poles and zeros of system, Laplace domain analysis,
Lecture 32	Solution to differential equations and system behavior.
Lecture 33	The z-Transform for discrete time signals and systems- eigen
	functions,
Lecture 34	Region of convergence, z-domain analysis.
Lecture 35	State-space analysis and multi-input, multi-output
	representation.
Lecture 36	The state-transition matrix and its role.
Lecture 37	The Sampling Theorem and its implications- Spectra of sampled
	signals.
Lecture 38	Reconstruction: ideal interpolator, zero-order hold, first-order
	hold, and so on
Lecture 39	Aliasing and its effects.
Lecture 40	Relation between continuous and discrete time systems.

Content delivery method:

- 1. Chalk and Duster
- **2**. PPT
- 3. Animation
- 4. Hand-outs

Anapproved Dean, FA & UD

Assignments:

An Approved Dean, FA & UD

The first-order difference equation y[n] - ay[n - 1] = x[n], 0 < a < 1, describes a particular discrete-time system initially at rest. (a) Verify that the impulse response h[n] for this system is h[n] = aⁿu[n]. (b) Is the system (i) memoryless? (ii) causal? (iii) stable? Clearly state your reasoning. (c) Is this system stable if |a| > 1? **O**3. Assignm Consider a discrete-time system with impulse response $h[n] = (\frac{1}{2})^n u[n]$ Determine the response to each of the following inputs: (a) $x[n] = (-1)^n = e^{j\pi n}$ for all n**(b)** $x[n] = e^{j(\pi n/4)}$ for all n(c) $x[n] = \cos\left(\frac{\pi n}{4} + \frac{\pi}{8}\right)$ for all n**Q1**. Consider two specific periodic sequences $\hat{x}[n]$ and $\hat{y}[n]$. $\hat{x}[n]$ has period N and $\hat{y}[n]$ has period *M*. The sequence $\hat{w}[n]$ is defined as $\hat{w}[n] = \hat{x}[n] + \hat{y}[n]$. (a) Show that $\hat{w}[n]$ is periodic with period MN. (b) Since $\hat{x}[n]$ has period N, its discrete Fourier series coefficients a_k also have period N. Similarly, since $\hat{y}[n]$ has period M, its discrete Fourier series coefficients b_k also have period M. The discrete Fourier series coefficients of $\hat{w}[n], c_k$, have period MN. Determine c_k in terms of a_k and b_k . Q2. The sequence $x[n] = (-1)^n$ is obtained by sampling the continuous-time sinusoidal signal $x(t) = \cos \omega_0 t$ at 1-ms intervals, i.e., $\cos(\omega_0 nT) = (-1)^*, \quad T = 10^{-3} \text{ s}$ Determine three *distinct* possible values of ω_0 . Q3.

Amel K. Mathurs Approved

Dean, FA & UD

3ECU5 DCC Network Theory	MM:150	3L:0T:0P	3 credits	
--------------------------	--------	----------	--------------	--

Node and Mesh Analysis, matrix approach of network containing voltage and current sources, and reactances, source transformation and duality.

Network theorems: Superposition, reciprocity, Thevenin's, Norton's, Maximum power Transfer, compensation and Tallegen's theorem as applied to AC. circuits.

Trigonometric and exponential Fourier series: Discrete spectra and symmetry of waveform, steady state response of a network to non-sinusoidal periodic inputs, power factor, effective values, Fourier transform and continuous spectra, three phase unbalanced circuit and power calculation.

Laplace transforms and properties: Partial fractions, singularity functions, waveform synthesis, analysis of RC, RL, and RLC networks with and without initial conditions with Laplace transforms evaluation of initial conditions.

Transient behavior, concept of complex frequency, Driving points and transfer functions poles and zeros of immittance function, their properties, sinusoidal response from pole-zero locations, convolution theorem and Two four port network and interconnections, Behaviors of series and parallel resonant circuits, Introduction to band pass, low pass, high pass and band reject filters.

Text/Reference Books:

Van, Valkenburg.; "Network analysis" ; Prentice hall of India, 2000
Sudhakar, A., Shyammohan, S. P.; "Circuits and Network"; Tata McGraw-
Hill New
Delhi, 1994
A William Hayt, "Engineering Circuit Analysis" 8th Edition, McGraw-Hill
Education

Course Outcome:

Course Code	Course Name	Course Outcom e	Details
10	¥>	CO 1	Apply the basic circuital law and simplify the network using network theorems
3ECU5	Network Theory	CO 2	Appreciate the frequency domain techniques in different applications.
	źF	Apply Laplace Transform for steady state and transient analysis	

il K. Mathus Approved Dean, FA & UD

CO 4	Evaluate transient response and two-port network parameters
CO 5	Analyze the series resonant and parallel resonant circuit and design filters

CO-PO Mapping:

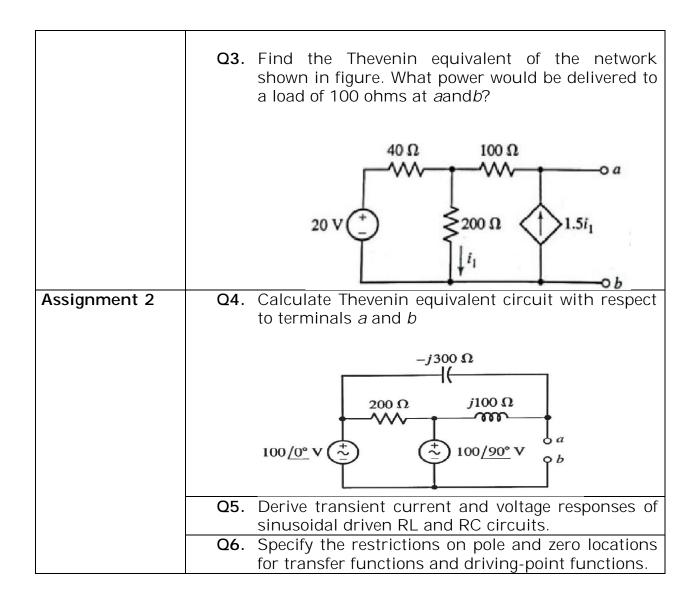
Subject	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
ک ا	CO 1	3	2		3	2							
5 Theory	CO 2	3	3	1	2	2							1
	CO 3	3	2	2		2							1
3EC Network	CO 4	2	3	2	2	1							
Ne	CO 5	2	3	3	2	1							
	3: 5	2	2: Mo	derat	e		1	: We	ak				

Lecture Plan:

Lecture	Content to be taught
No.	
Lecture 1	Overview of Network Theory and its significance
Lecture 2	Node and Mesh Analysis
Lecture 3	matrix approach of network containing voltage and current
	sources and reactances
Lecture 4	source transformation and duality
Lecture 5	Network theorems: Superposition and reciprocity
Lecture 6	Thevenin's and Norton's theorem
Lecture 7	Maximum power Transfer theorem
Lecture 8	compensation and Tallegen's theorem as applied to AC. Circuits
Lecture 9	Trigonometric and exponential Fourier series
Lecture 10	Fourier series: Discrete spectra and symmetry of waveform
Lecture 11	Steady state response of a network to non-sinusoidal periodic
	inputs
Lecture 12	power factor and effective values
Lecture 13	Fourier transform and continuous spectra
Lecture 14	three phase unbalanced circuit and power calculation
Lecture 15	three phase unbalanced circuit and power calculation
Lecture 16	Laplace transforms

Approved Dean, FA & UD

Lecture 17	Laplace transforms
Lecture 18	Laplace transforms properties: Partial fractions
Lecture 19	singularity functions and waveform synthesis
Lecture 20	analysis of RC networks
Lecture 21	analysis of RL networks
Lecture 22	analysis of RLC networks
	Analysis of networks with and without initial conditions
	Analysis of networks with and without initial conditions
Lecture 25	Analysis of networks with and without initial conditions with
	lapalace transforms evaluation
Lecture 26	Analysis of networks with and without initial conditions with
	lapalace transforms evaluation of initial condition
	Transient behavior
	concept of complex frequency
Lecture 29	Driving points and transfer functions poles and zeros of
	immittance function
Lecture 30	Driving points and transfer functions poles and zeros of
	immittance function: their properties
	sinusoidal response from pole-zero locations
	sinusoidal response from pole-zero locations
	convolution theorem
	sinusoidal response from pole-zero locations
	Two four port network and interconnections
	Two four port network and interconnections
	Behaviors of series and parallel resonant circuits
	Introduction to band pass and low pass
	Introduction to high pass and reject filters
Lecture 40	Spill over class


Content delivery method:

- 1. Chalk and Duster
- **2**. PPT
- 3. Hand-outs

Sample assignments:

Assignment 1	Q1.				gnificance evant examp		f sourc	
		ti ansion	mation wi	trifere	evant examp	ле		
	Q2.	State an	nd prove	time	differentiat	ion 1	theorem	in
		Laplace ⁻	Transform	า				

Amel K. Mathus Approved Dean, FA & UD

And K. Mathus Approved

Dean, FA & UD

3ECU6	DCC/IEC	Technical Communication	MM:150	2L:0T:0P	2 credit
-------	---------	----------------------------	--------	----------	-------------

CNI		
SN		Hours
1	Introduction to Technical Communication- Definition of technical communication, Aspects of technical communication, forms of technical communication, importance of technical communication, technical communication skills (Listening, speaking, writing, reading writing), linguistic ability, style in technical communication.	4
2	Comprehension of Technical Materials/Texts and Information Design & development - Reading of technical texts, Reading and comprehending instructions and technical manuals, Interpreting and summarizing technical texts, Note- making. Introduction of different kinds of technical documents, Information collection, factors affecting information and document design, Strategies for organization, Information design and writing for print and online media.	6
3	Technical Writing, Grammar and Editing- Technical writing process, forms of technical discourse, Writing, drafts and revising, Basics of grammar, common error in writing and speaking, Study of advanced grammar, Editing strategies to achieve appropriate technical style, Introduction to advanced technical communication. Planning, drafting and writing Official Notes, Letters, E-mail, Resume, Job Application, Minutes of Meetings.	8
4	Advanced Technical Writing-Technical Reports, types of technical reports, Characteristics and formats and structure of technical reports. Technical Project Proposals, types of technical proposals, Characteristics and formats and structure of technical proposals. Technical Articles, types of technical articles, Writing strategies, structure and formats of technical articles.	8
	Total	26

Suggested Text/Reference Books

- 1. "Technical Communication", 2018, Rajesh K. Lidiya, Oxford University Press, India.
- 2. Communication Skills, Pushplata& Sanjay Kumar, Oxford University Press, India.
- 3. The Written Word, Vandana Singh, Oxford University Press, India.
- 4. Current English Grammar and Usage with Composition, R. P. Sinha, Oxford University Press, India.

l K. Mathus Approved Dean, FA & UD

5.	Rodriques	Μ.	V.,	'Effective	Business	Communication',	Concept
	Publishing	Con	npan	y, New Del	hi, 1992 re	eprint (2000).	

- 6. Bansal, R K and Harrison J B, 'Spoken English' Orient Longman, Hyderabad.
- 7. Binod Mishra &Sangeeta Sharma, 'Communication Skills for Engineers and Scientists, PHI Learning Private Ltd, New Delhi, 2011.
- 8. Gartside L. 'Modern Business Correspondence, Pitman Publishing, London.

& K. Mathus Approved Dean, FA & UD

3ECU11	DCC	Electronics Devices Lab	MM:75	0L:0T:3P	2 credit
--------	-----	----------------------------	-------	----------	-------------

Sr. No.	Name of Experiment						
1.	Study the following devices: (a) Analog& digital multimeters (b) Function/ Signal generators (c) Regulated d. c. power supplies (constant voltage and constant current operations) (d) Study of analog and digital CRO, measurement of time period, amplitude, frequency & phase angle using Lissajous figures.						
2.	Plot V-I characteristic of P-N junction diode & calculate cut-in voltage, reverse Saturation current and static & dynamic resistances.						
3.	Plot the output waveform of half wave rectifier and effect of filters on waveform. Also calculate its ripple factor.						
4.	Study bridge rectifier and measure the effect of filter network on D.C. voltage output & ripple factor.						
5.	Plot and verify output waveforms of different clipper and clamper.						
6.	Plot V-I characteristic of Zener diode						
7.	Study of Zener diode as voltage regulator. Observe the effect of load changes and determine load limits of the voltage regulator						
8.	Plot input-output characteristics of BJT in CB, CC and CE configurations. Find their h-parameters.						
9.	Study of different biasing circuits of BJT amplifier and calculate its Q-point.						
10.	Plot frequency response of two stage RC coupled amplifier & calculate its bandwidth .						
11.	Plot input-output characteristics of field effect transistor and measure $I_{\text{dss}}\text{and }V_{\text{p}}.$						
12.	Plot frequency response curve for FET amplifier and calculate its gain bandwidth product.						

Am Approved Dean, FA & UD

Course Outcome:

Course	Course	Course	Details					
Code	Name	Outcome	Details					
		CO 1	Understand the characteristics of different					
			Electronic Devices.					
	q	CO 2	Verify the rectifier circuits using diodes and					
	Lab		implement them using hardware.					
	S	CO 3	Design various amplifiers like CE, CC,					
	Devices		common source amplifiers and implement					
	ev		them using hardware and also observe their					
			frequency responses					
	Electronic	CO 4	Understand the construction, operation and					
	10		characteristics of JFET and MOSFET, which					
	ctr		can be used in the design of amplifiers.					
	lee	CO 5	Understand the need and requirements to					
	ш		obtain frequency response from a transistor so					
3ECU11			that Design of RF amplifiers and other high					
S			frequency amplifiers is feasible					

CO-PO Mapping:

Subject	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
	CO 1	3	2	3	2	1							1
l 1 nic Lab	CO 2	2	3	1	3	3							2
3ECU11 Electronic Jevices Lal	CO 3	2	1	2	3	3							
3E Elec Devid	CO 4	3	2	3	2	2							1
	CO 5	3	2	1	2	2							
	3: Strongly 2: Moderate				te		1	: We	ak				

Av Approved Dean, FA & UD

3ECU12	DCC	Digital System Design Lab	MM:75	0L:0T:3P	1 credit
--------	-----	------------------------------	-------	----------	-------------

S. No.	Name of Experiment
Part	A: Combinational Circuits
1.	To verify the truth tables of logic gates: AND, OR, NOR, NAND, NOR, Ex-OR and Ex-NOR
2.	To verify the truth table of OR, AND, NOR, Ex-OR, Ex-NOR logic gates realized using NAND & NOR gates.
3.	To realize an SOP and POS expression.
4.	To realize Half adder/ Subtractor & Full Adder/ Subtractor using NAND & NOR gates and to verify their truth tables
5.	To realize a 4-bit ripple adder/ Subtractor using basic Half adder/ Subtractor& basic Full Adder/ Subtractor.
6.	To design 4-to-1 multiplexer using basic gates and verify the truth table. Also verify the truth table of 8-to-1 multiplexer using IC
7.	To design 1-to-4 demultiplexer using basic gates and verify the truth table. Also to construct 1-to-8 demultiplexer using blocks of 1-to-4 demultiplexer
8.	To design 2x4 decoder using basic gates and verify the truth table. Also verify the truth table of 3x8 decoder using IC
9.	Design & Realize a combinational circuit that will accept a 2421 BCD code and drive a TIL -312 seven-segment display
Part	B: Sequential Circuits
10.	Using basic logic gates, realize the R-S, J-K and D-flip flops with and without clock signal and verify their truth table.
11.	Construct a divide by 2, 4 & 8 asynchronous counter. Construct a 4-bit binary counter and ring counter for a particular output pattern using D flip flop.
12.	Design and construct unidirectional shift register and verify the
13.	Design and construct BCD ripple counter and verify the function.
14.	Design and construct a 4 Bit Ring counter and verify the function
15.	Perform input/output operations on parallel in/Parallel out and Serial in/Serial out registers using clock. Also exercise loading only one of multiple values into the register using multiplexer.

Note: Minimum 6 experiments to be conducted from **Part-A**& 4 experiments to be conducted from **Part-B**.

And K. Mathus

3ECU12	DCC	Digital System Design Lab	MM:75	0L:0T:2P	1 credit
--------	-----	------------------------------	-------	----------	-------------

	A: Combinational Circuits To verify the truth tables of logic gates: AND, OR, NOR, NAND, NOR,				
	To verify the truth tables of logic gates: AND, OR, NOR, NAND, NOR,				
	To verify the truth tables of logic gates: AND, OR, NOR, NAND, NOR, Ex-OR and Ex-NOR				
	To verify the truth table of OR, AND, NOR, Ex-OR, Ex-NOR logic gates realized using NAND & NOR gates.				
3.	To realize an SOP and POS expression.				
4	To realize Half adder/ Subtractor& Full Adder/ Subtractor using NAND & NOR gates and to verify their truth tables				
	To realize a 4-bit ripple adder/ Subtractor using basic Half adder/ Subtractor& basic Full Adder/ Subtractor.				
6	To design 4-to-1 multiplexer using basic gates and verify the truth table. Also verify the truth table of 8-to-1 multiplexer using IC				
7.	To design 1-to-4 demultiplexer using basic gates and verify the truth table. Also to construct 1-to-8 demultiplexer using blocks of 1-to-4 demultiplexer				
	To design 2x4 decoder using basic gates and verify the truth table. Also verify the truth table of 3x8 decoder using IC				
	Design & Realize a combinational circuit that will accept a 2421 BCD code and drive a TIL -312 seven-segment display				
Part E	B: Sequential Circuits				
	Using basic logic gates, realize the R-S, J-K and D-flip flops with and without clock signal and verify their truth table.				
11.	Construct a divide by 2, 4 & 8 asynchronous counter. Construct a 4-bit binary counter and ring counter for a particular output pattern using D flip flop.				
12.	Design and construct unidirectional shift register and verify the				
13.	Design and construct BCD ripple counter and verify the function.				
14.	Design and construct a 4 Bit Ring counter and verify the function				
15.	Perform input/output operations on parallel in/Parallel out and Serial in/Serial out registers using clock. Also exercise loading only one of multiple values into the register using multiplexer.				

Note: Minimum 6 experiments to be conducted from **Part-A**& 4 experiments to be conducted from **Part-B**.

Amel K Mathur Approved Dean, FA & UD

3ECU13	DCC/IEC	Signal Processing Lab	MM:75	0L:0T:2P	1 credit	
--------	---------	-----------------------	-------	----------	-------------	--

Sr. No.	Name of Experiment (Simulate using MATLAB environment)			
1.	Generation of continuous and discrete elementary signals (periodic and			
	non periodic)using mathematical expression.			
2.	Generation of Continuous and Discrete Unit Step Signal.			
3.	Generation of Exponential and Ramp signals in Continuous & Discrete			
	domain.			
4.	Continuous and discrete time Convolution (using basic definition).			
5.	Adding and subtracting two given signals. (Continuous as well as			
	Discrete signals)			
6.	To generate uniform random numbers between (0, 1).			
7.	To generate a random binary wave.			
	To generate and verify random sequences with arbitrary distributions,			
	means and variances for following:			
8.	(a) Rayleigh distribution			
	(b) Normal distributions: N(0,1).			
	(c) Gaussion distributions: N (m, x)			
9.	To plot the probability density functions. Find mean and variance for			
	the above distributions			

Course Outcome:

Course Code	Course Name	Course Outcom e	Details
	Lab	CO 1	Able to generate different Continuous and Discrete time signals.
	Signal Processing	CO 2	Understand the basics of signals and different operations on signals.
	roce	CO 3	Develop simple algorithms for signal processing and test them using MATLAB
ECU13	nal P	CO 4	Able to generate the random signals having different distributions, mean and variance.
3EC	Sig	CO 5	Design and conduct experiments, interpret and analyse data and report results.

And K. Mathurs Approved Dean, FA & UD

CO-PO Mapping:

Subject	Course Outcom es	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
le b	CO 1	2		1		2							
Signal ng Lab	CO 2	3		1									
13 S ssin	CO 3	1	2	3	1	3							
3ECU13 Sig Processing	CO 4	2	1	1		2							
3I Pr	CO 5	1	1	2	2	2							
L	3: 5	Strong	gly	2	2: Mo	derat	te	1	1	: We	ak		. <u> </u>

Approved Dean, FA & UD

3ECU14	DCC/IEC	Computer	MM:75	0L:0T:2P	1
020011		Programming Lab-I	101101.70	02.01.21	credit

1.	Write a simple C program on a 32 bit compiler to understand the
	concept of array storage, size of a word. The program shall be written
	illustrating the concept of row major and column major storage. Find
	the address of element and verify it with the theoretical value. Program
	may be written for arrays upto 4-dimensions.
2.	Simulate a stack, queue, circular queue and dequeue using a one
	dimensional array as storage element. The program should implement
	the basic addition, deletion and traversal operations.
3.	Represent a 2-variable polynomial using array. Use this representation
	to implement addition of polynomials.
4.	Represent a sparse matrix using array. Implement addition and
	transposition operations using the representation.
5.	Implement singly, doubly and circularly connected linked lists
	illustrating operations like addition at different locations, deletion from
	specified locations and traversal.
6.	Repeat exercises 2, 3 & 4 with linked structures.
7.	Implementation of binary tree with operations like addition, deletion,
	traversal.
8.	Depth first and breadth first traversal of graphs represented using
	adjacency matrix and list.
9.	Implementation of binary search in arrays and on linked Binary Search
	Tree.
10.	Implementation of insertion, quick, heap, topological and bubble
	sorting algorithms.

3ECU20	DECA	MM:50	0L:0T:0P	1 credit
--------	------	-------	----------	-------------

Amel K. Mathus Approved Dean, FA & UD

4ECU1	ICC	Advance Engineering Mathematics-II	MM:150	3L:1T:0P	4 credit
-------	-----	---------------------------------------	--------	----------	-------------

S	Contents	Hours
N	Contents	110013
1	Introduction: Objective, scene and outcome of the course	1
	Introduction: Objective, scope and outcome of the course.	I
2	Complex Variable – Differentiation: Differentiation, Cauchy-Riemann equations, analytic functions, harmonic functions, finding harmonic conjugate; elementary analytic functions (exponential, trigonometric, logarithm) and their properties; Conformal mappings, Mobius transformations and their properties.	7
3	Complex Variable - Integration: Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy Integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof).	8
4	Applications of complex integration by residues: Evaluation of definite integral involving sine and cosine. Evaluation of certain improper integrals.	4
5	Special Functions: Legendre's function, Rodrigues formula, generating function, Simple recurrence relations, orthogonal property. Bessel's functions of first and second kind, generating function, simple recurrence relations, orthogonal property.	10
6	Linear Algebra: Vector Spaces, subspaces, Linear independence, basis and dimension, Inner product spaces, Orthogonality, Gram Schmidt orthogonalization, characteristic polynomial, minimal polynomial, positive definite matrices and canonical forms, QR decomposition.	10
	Total	40

And K. Mathus Approved Dean, FA & UD

4ECU2	DCC	Analog Circuits	MM:150	3L:1T:0P	4 Credit	
-------	-----	-----------------	--------	----------	-------------	--

Diode Circuits, Amplifier models: Voltage amplifier, current amplifier, transconductance amplifier and trans-resistance amplifier. Biasing schemes for BJT and FET amplifiers, bias stability, various configurations (such as CE/CS, CB/CG, CC/CD) and their features, small signal analysis, low frequency transistor models, estimation of voltage gain, input resistance, output resistance etc., design procedure for particular specifications, low frequency analysis of multistage amplifiers.

High frequency transistor models, frequency response of single stage and multistage amplifiers, cascode amplifier. Various classes of operation (Class A, B, AB, C etc.), their power efficiency and linearity issues. Feedback topologies: Voltage series, current series, voltage shunt, current shunt, effect of feedback on gain, bandwidth etc., calculation with practical circuits, concept of stability, gain margin and phase margin.

Oscillators: Review of the basic concept, Barkhausen criterion, RC oscillators (phase shift, Wien bridge etc.), LC oscillators (Hartley, Colpitt, Clapp etc.), non-sinusoidal oscillators. Current mirror: Basic topology and its variants, V-I characteristics, output resistance and minimum sustainable voltage (VON), maximum usable load. Differential amplifier: Basic structure and principle of operation, calculation of differential gain, common mode gain, CMRR and ICMR. OP-AMP design: design of differential amplifier for a given specification, design of gain stages and output stages, compensation.

OP-AMP applications: review of inverting and non-inverting amplifiers, integrator and differentiator, summing amplifier, precision rectifier, Schmitt trigger and its applications. Active filters: Low pass, high pass, band pass and band stop, design guidelines.

Digital-to-analog converters (DAC): Weighted resistor, R-2R ladder, resistor string etc. Analog to digital converters (ADC): Single slope, dual slope, successive approximation, flash etc. Switched capacitor circuits: Basic concept, practical configurations, application in amplifier, integrator, ADC etc.

Text/Reference Books:

1.	J.V. Wait, L.P. Huelsman and GA Korn, Introduction to Operational
	Amplifier theory and applications, McGraw Hill, 1992.
2.	J. Millman and A. Grabel, Microelectronics, 2nd edition, McGraw Hill,
	1988.
3.	P. Horowitz and W. Hill, The Art of Electronics, 2nd edition, Cambridge
	University Press, 1989.
4.	A.S. Sedra and K.C. Smith, Microelectronic Circuits, Saunder's
	College11 Publishing, Edition IV.
5.	Paul R. Gray and Robert G.Meyer, Analysis and Design of Analog

· l K. Mathus Approved Dean, FA & UD

Integrated Circuits, John Wiley, 3rdEdition.

Course Outcome:

Course Code	Course Name	Course Outco me	Details
		CO 1	Understand the characteristics of diodes and transistors
	og Circuits	CO 2	Design and analyze various rectifier and amplifier circuits
4ECU2		CO 3	Design sinusoidal and non-sinusoidal oscillators
	Analog	CO 4	Understand the functioning of OP-AMP and design OP-AMP based circuits
		CO 5	Understanding the designing of ADCs and DACs

CO-PO Mapping:

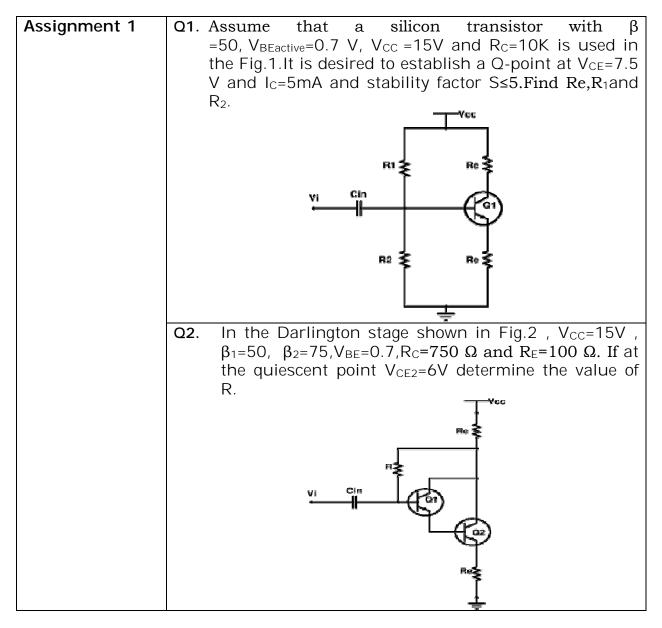
Subject	Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
6	CO 1	3		1	1	2							
nalo, ts	CO 2	1	1	2		1							
12 Ar rcui	CO 3	3	1		1								
4ECU2 Analog Circuits	CO 4	2				2							
4	CO 5	2	3		2								
-	3: 5	Strong	gly	2	2: Mo	dera	te	•	1	:We	ak		

Lecture Plan:

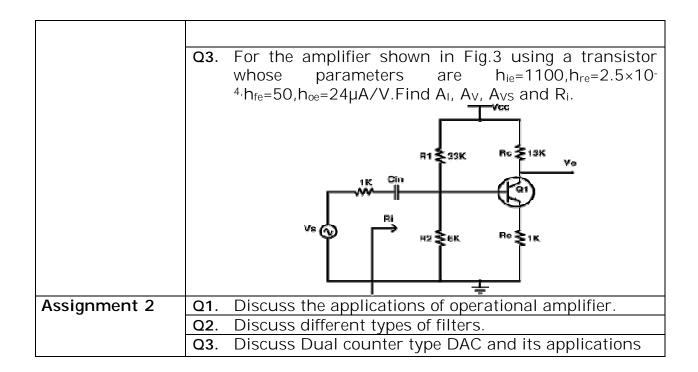
Lecture No.	Content to be taught
Lecture 1	Zero Lecture
Lecture 2	Diode Circuits and Amplifier models

Amel K. Mathus Approved Dean, FA & UD

Lecture 3	Voltage amplifier, current amplifier, trans-conductance amplifier
	and trans-resistance amplifier
Lecture 4	Biasing schemes for BJT and FET amplifiers
Lecture 5	Bias stability in various configurations such as CE/CS, CB/CG,
	CC/CD
Lecture 6	Small signal analysis of BJT and FET
Lecture 7	low frequency transistor models
Lecture 8	Estimation of voltage gain, input resistance, output resistance etc.
Lecture 9	Design procedure for particular specifications, low frequency
	analysis of multistage amplifiers.
Lecture 10	High frequency transistor models
Lecture 11	frequency response of single stage and multistage amplifiers
	Cascode Amplifier
Lecture 13	Various classes of operation (Class A, B, AB, C etc.), their power
	efficiency and linearity issues
Lecture 14	Feedback topologies: Voltage series, current series, voltage shunt,
	current shunt
	Effect of feedback on gain, bandwidth etc.,
Lecture 16	Calculation with practical circuits
	Concept of stability, gain margin and phase margin.
Lecture 18	Basics of oscillator
	Barkhausen criterion, RC oscillators (phase shift, Wien bridge etc.)
	LC oscillators (Hartley, Colpitt, Clapp etc.)
Lecture 21	Non-sinusoidal oscillators. Current mirror: Basic topology and its
	variants,
Lecture 22	V-I characteristics, output resistance and minimum sustainable
	voltage (VON), maximum usable load.
Lecture 23	Differential amplifier: Basic structure and principle of operation,
	calculation of differential gain, common mode gain, CMRR and
	ICMR.
Lecture 24	OP-AMP design: design of differential amplifier for a given
	specification
	Design of gain stages and output stages, compensation
Lecture 26	OP-AMP applications: review of inverting and non-inverting
Looturo 27	amplifiers
	Integrator and differentiator, summing amplifier
	Precision rectifier, Schmitt trigger and its applications
	Active filters: Low pass, high pass
	Band pass and band stop Filters
	Filter Design guidelines
Lecture 32	Digital-to-analog converters (DAC): Weighted resistor, R-2R ladder,
	resistor string etc
	Analog to digital converters (ADC): Single slope, dual slope
Lecture 34	successive approximation, flash TYPE ADC


Amel K. Mathur Approved Dean, FA & UD

Lecture 35	Switched capacitor circuits: Basic concept
Lecture 36	Switched capacitor circuits: practical configurations
Lecture 37	Switched capacitor circuits: applications
Lecture 38	Spill over classes
Lecture 39	Spill over classes
Lecture 40	Spill over classes


Content delivery method:

- 1. Chalk and Duster
- **2**. PPT
- 3. Hand-outs

Sample assignments:

Mathus 0K. Approved Dean, FA & UD

il K. Mathurs Approved Dean, FA & UD

4ECU3	DCC	Microcontrollers	MM:150	3L:0T:0P	3 Credit	
-------	-----	------------------	--------	----------	-------------	--

Overview of microcomputer systems and their building blocks, memory interfacing, concepts of interrupts and Direct Memory Access, instruction sets of microprocessors (with examples of 8085 and 8086);

Interfacing with peripherals - timer, serial I/O, parallel I/O, A/D and D/A converters; Arithmetic Coprocessors; System level interfacing design;

Concepts of virtual memory, Cache memory, Advanced coprocessor Architectures- 286, 486,

Pentium; Microcontrollers: 8051 systems,

Introduction to RISC processors; ARM microcontrollers interface designs.

Text/Reference Books:

1.	R. S. Gaonkar, Microprocessor Architecture: Programming and
	Applications with
	the 8085/8080A, Penram International Publishing, 1996
2.	D A Patterson and J H Hennessy, "Computer Organization and Design
	The
	hardware and software interface. Morgan Kaufman Publishers.
3.	Douglas Hall, Microprocessors Interfacing, Tata McGraw Hill, 1991.
4.	Kenneth J. Ayala, The 8051 Microcontroller, Penram International
	Publishing, 1996.

Course Outcome:

Course Code	Course Name	Course Outcom e	Details			
	Ś	CO 1	Develop assembly language programming skills.			
:U3	atroller	CO 2	Able to build interfacing of peripherals like, I/O, A/D, D/A, timer etc.			
4ECU3	Microcontrollers	CO 3	Develop systems using different microcontrollers.			
	Σ	CO 4	Explain the concept of memory organization.			
		CO 5	Understand RSIC processors and design ARM			

il K. Mathus Approved Dean, FA & UD

	microcontroller based systems.

CO-PO Mapping:

Subject	Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
ILS	CO 1			3	1								
3 rolle	CO 2			3		1							
4ECU3 Microcontrollers	CO 3	1	2	3									
4 croc	CO 4	3	2	1									
Ξ	CO 5			3	2	1							
	3: 5	Strong	gly	2	2: Mo	derat	e		1	:We	ak		

Lecture Plan:

Lecture	Content to be taught
No.	_
Lecture 1	Zero Lecture
Lecture 2	Overview of microcomputer systems and their building blocks
Lecture 3	Overview of microcomputer systems and their building blocks
Lecture 4	Memory interfacing
Lecture 5	Memory interfacing
Lecture 6	Concepts of interrupts
Lecture 7	Direct Memory Access
Lecture 8	Direct Memory Access
Lecture 9	Instruction sets of microprocessors (with examples of 8085 and
	8086)
Lecture 10	Instruction sets of microprocessors (with examples of 8085 and
	8086)
Lecture 11	Instruction sets of microprocessors (with examples of 8085 and
	8086)
Lecture 12	Instruction sets of microprocessors (with examples of 8085 and
	8086)
Lecture 13	Interfacing with peripherals
Lecture 14	Timer
Lecture 15	Serial I/O
Lecture 16	Parallel I/O

Amel K. Mathur Approved Dean, FA & UD

Lecture 17	A/D and D/A converters;
Lecture 18	A/D and D/A converters
	Arithmetic Coprocessors
	System level interfacing design
	Concepts of virtual memory, Cache memory
	Concepts of virtual memory, Cache memory
	Advanced coprocessor Architectures- 286, 486, Pentium
Lecture 24	Advanced coprocessor Architectures- 286, 486, Pentium
	Advanced coprocessor Architectures- 286, 486, Pentium
Lecture 26	Microcontrollers: 8051 systems,
Lecture 27	Microcontrollers: 8051 systems,
	Introduction to RISC processors
	Introduction to RISC processors
	Introduction to RISC processors
	ARM microcontrollers interface designs
	Spill Over Classes
Lecture 40	Spill Over Classes

Content delivery method:

- 1. Chalk and Duster
- **2**. PPT
- 3. Hand-outs

Assignments:

Assignment 1	Q1. Compare between microprocessor & microcontroller based on no. of instructions used, registers, memory and applications.								
	Q2. Interface external program memory with 8051 & explain how the data is transfer.								
	Q3. List the I/O ports of microcontroller 8051. Explain								
	their alternative function?								
Assignment 2	Q1. Explain RISC and CISC?								
	Q2. Without using MUL instruction, perform								
	multiplication operation on any two operands, with								
	both of them being:								
	a. Positive numbers								

An Approved Dean, FA & UD

b. One positive and other negative number
c. Both negative numbers
Verify the values computed.
Q3. Can you brief up the evolution of ARM architecture?

Am Approved Dean, FA & UD

4ECU4	DCC	Electronics Measurement & Instrumentation	MM:150	3L:0T:0P	3 Credit
-------	-----	---	--------	----------	-------------

THEORY OF ERRORS - Accuracy & precision, Repeatability, Limits of errors, Systematic & random errors, Modeling of errors, Probable error & standard deviation, Gaussian error analysis, Combination of errors.

ELECTRONIC INSTRUMENTS - Electronic Voltmeter, Electronic Multimeters, Digital Voltmeter, and Component Measuring Instruments: Q meter, Vector Impedance meter, RF Power & Voltage Measurements, Introduction to shielding & grounding.

OSCILLOSCOPES – CRT Construction, Basic CRO circuits, CRO Probes, Techniques of Measurement of frequency, Phase Angle and Time Delay, Multibeam, multi trace, storage & sampling Oscilloscopes.

SIGNAL GENERATION AND SIGNAL ANALYSIS - Sine wave generators, Frequency synthesized signal generators, Sweep frequency generators. Signal Analysis - Measurement Technique, Wave Analyzers, and Frequency - selective wave analyser, Heterodyne wave analyser, Harmonic distortion analyser, and Spectrum analyser.

TRANSDUCERS - Classification, Selection Criteria, Characteristics, Construction, Working Principles and Application of following Transducers:-RTD, Thermocouples, Thermistors, LVDT, Strain Gauges, Bourdon Tubes, Seismic Accelerometers, Tachogenerators, Load Cell, Piezoelectric Transducers, Ultrasonic Flow Meters.

Text/Reference Books:

- 1. Electronic Instrument and Measurment, Bell, Oxford . 2007
- 2. Electronic Measurements & Instrumentation, Bernard Oliver, TMH. 1971
- **3.** Electronic Instrumentation, H S Kalsi, TMH 2012
- **4.** Instrumentation Measurement & Analysis, B.C.Nakra,K.K. Chaudhry, TMH 2004
- **5.** Electronic Measurements and Instrumentation, Gupta &Soni, Genius pub. 2014.
- 6. Electronic Measurements & Instrumentation, Bernard Oliver, John Cage, TMH 1971
- 7. Electronic Measurements and Instrumentation, Lal Kishore, Pearson 2010

l K. Mathus Approved Dean, FA & UD

- Elements of Electronic Instrumentation And Measurement, Carr, Pearson 1996
- 9. Instrumentation for Engineering Measurements, 2ed, Dally, Wiley 1993
- 10. Introduction To Measurements and Instrumetation, Arun K. Ghosh, PHI 2012

And K. Mathus

	log and Digital MM:150 mmunication	3L:0T:0P	3 credit
--	------------------------------------	----------	-------------

Review of signals and systems, Frequency domain representation of signals, Principles of Amplitude Modulation Systems- DSB, SSB and VSB modulations. Angle Modulation, Representation of FM and PM signals, Spectral characteristics of angle modulated signals.

Review of probability and random process. Gaussian and white noise characteristics, Noise in amplitude modulation systems, Noise in Frequency modulation systems. Pre-emphasis and De-emphasis, Threshold effect in angle modulation.

Pulse modulation. Sampling process. Pulse Amplitude and Pulse code modulation (PCM), Differential pulse code modulation. Delta modulation, Noise considerations in PCM, Time Division multiplexing, Digital Multiplexers.

Elements of Detection Theory, Optimum detection of signals in noise, Coherent communication with waveforms- Probability of Error evaluations. Baseband Pulse Transmission- Inter symbol Interference and Nyquist criterion. Pass band Digital Modulation schemes- Phase Shift Keying, Frequency Shift Keying, Quadrature Amplitude Modulation, Continuous Phase Modulation and Minimum Shift Keying.

Digital Modulation tradeoffs. Optimum demodulation of digital signals over band-limited

channels- Maximum likelihood sequence detection (Viterbi receiver). Equalization Techniques. Synchronization and Carrier Recovery for Digital modulation.

Text/Reference Books:

-	
1.	Haykin S., "Communications Systems", John Wiley and Sons, 2001.
2.	Taub H. and Schilling D.L., "Principles of Communication Systems",
	Tata McGraw Hill, 2001.
3.	Proakis J. G. and Salehi M., "Communication Systems Engineering",
	Pearson Education, 2002.
4.	Wozencraft J. M. and Jacobs I. M., ``Principles of Communication
	Engineering'',John
	Wiley, 1965.
5.	Barry J. R., Lee E. A. and Messerschmitt D. G., ``Digital
	Communication", Kluwer
	Academic Publishers, 2004.
6.	Proakis J.G., ``Digital Communications", 4th Edition, McGraw Hill,
	2000.

il K. Mathus Approved Dean, FA & UD

Course Code	Course Name	Course Outco me	Details					
	-	CO 1	Analyze and compare different analog modulation schemes for their efficiency and bandwidth					
	Analog and Digita Communication	CO 2	Analyze the behavior of a communication system in presence of noise					
4ECU5		CO 3	Investigate pulsed modulation system and analyze their system performance					
4E		CO 4	Analyze different digital modulation schemes and can compute the bit error performance					
	A	CO 5	Design a communication system comprised of both analog and digital modulation techniques					

CO-PO Mapping:

Subject	Cou rse Out com es	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
tal on	CO 1	3	3		3		1				1		
igi ati	CO 2	3	2		3		1						
	CO 3	3	2		3		2						
4EC4- Analog & Communi	CO 4	3	3		3		2				1		
Ar	CO 5	3	2	3	3		3			2	2		
3: Strongly				2	2: Mo	derat	te		1	: We	ak		

Content delivery method:

- 1. Chalk and Duster
- **2**. PPT

Amel K. Mathus Approved

Dean, FA & UD

Lecture Plan:

Lecture No.	Content to be taught
Lecture 1	Introduction to the COURSE
Lecture 2	Review of signals and systems, Frequency domain representation of signals
Lecture 3	Principles of Amplitude Modulation Systems- DSB, SSB and VSB modulations
Lecture 4	Principles of Amplitude Modulation Systems- DSB, SSB and VSB modulations
Lecture 5	Principles of Amplitude Modulation Systems- DSB, SSB and VSB modulations
Lecture 6	Angle Modulation, Representation of FM and PM signals
Lecture 7	Angle Modulation, Representation of FM and PM signals
Lecture 8	Spectral characteristics of angle modulated signals.
	Review of probability and random process
	Review of probability and random process
	Noise in amplitude modulation systems
	Noise in amplitude modulation systems
	Noise in Frequency modulation systems
	Pre-emphasis and Deemphasis
	Threshold effect in angle modulation
	Pulse modulation. Sampling
	Pulse Amplitude and Pulse code modulation (PCM)
	Pulse Amplitude and Pulse code modulation (PCM)
Lecture 19	Differential pulse code modulation
	Delta modulation
Lecture 21	Noise considerations in PCM
Lecture 22	Time Division multiplexing, Digital Multiplexers
	Elements of Detection Theory
Lecture 24	Optimum detection of signals in noise
Lecture 25	Coherent communication with waveforms- Probability of Error evaluations
Lecture 26	Coherent communication with waveforms- Probability of Error evaluations
Lecture 27	BasebandPulse Transmission- Inter symbol Interference and Nyquist criterion
Lecture 28	BasebandPulse Transmission- Inter symbol Interference and Nyquist criterion
Lecture 29	Pass band Digital Modulation schemes
	Phase Shift Keying
	Frequency Shift Keying
	Quadrature Amplitude Modulation
	Continuous Phase Modulation and Minimum Shift Keying.

Am Approved Dean, FA & UD

Lecture 34	Digital Modulation tradeoffs
Lecture 35	Optimum demodulation of digital signals over band-limited
	channels
Lecture 36	Optimum demodulation of digital signals over band-limited
	channels
Lecture 37	Maximum likelihood sequence detection (Viterbi receiver)
Lecture 38	Equalization Techniques
Lecture 39	Synchronization and Carrier Recovery for Digital modulation
Lecture 40	Synchronization and Carrier Recovery for Digital modulation

Assignments:

Assignment 1	Q1. Design Modulator and Demodulator of SSB-SC Modulation based on its mathematical expression.								
	Q2. Derive the figure of merit in a) FM Receiver b) PM Receiver								
	Q3. A Carrier signal $c(t) = 20 \cos (2\pi 10^6 t)$ is modulated by a message signal having three frequencies 5 KHz, 10 KHz & 20 KHz. The corresponding modulation indexes are 0.4, 0.5 & 0.6. Sketch the spectrum. Calculate bandwidth, power and efficiency.								
Assignment 2	Q1. Derive the expression for probability of error in ASK, FSK and PSK systems and compare them.								
	Q2. With block diagrams explain about DPCM & DM. also compare them.								
	 Q3. A message signal m(t) = 4 cos (2π10³t) is sampled at nyquist rate and transmitted through a channel using 3-bit PCM system. i. Calculate all the parameters of the PCM. ii. If the sampled values are 3.8, 2.1, 0.5, -1.7, -3.2 & -4 then determine the quantizer output, encoder output and quantization error per each sample. iii. Sketch the transfer characteristics of the quantizer. 								

Amel K. Mathus Approved Dean, FA & UD

4ECU6 DCC/IEC Managerial Economics And Financial Accounting	MM:150	2L:0T:0P	2 Credit
--	--------	----------	-------------

SN	Contents	Hours
1	Basic economic concepts- Meaning, nature and scope of	4
	economics, deductive vs inductive methods, static and dynamics,	
	Economic problems: scarcity and choice, circular flow of	
	economic activity, national income-concepts and measurement.	
2	Demand and Supply analysis-Demand- types of demand,	
	determinants of demand, demand function, elasticity of demand,	5
	demand forecasting-purpose, determinants and methods, Supply-	5
	determinants of supply, supply function, elasticity of supply.	
3	Production and Cost analysis-Theory of production-	
	production function, law of variable proportions, laws of returns	
	to scale, production optimization, least cost combination of	5
	inputs, isoquants. Cost concepts-explicit and implicit cost, fixed	U
	and variable cost, opportunity cost, sunk costs, cost function,	
	cost curves, cost and output decisions, cost estimation.	
4	Market structure and pricing theory-Perfect competition,	4
	Monopoly, Monopolistic competition, Oligopoly.	
5	Financial statement analysis-Balance sheet and related	
	concepts, profit and loss statement and related concepts,	-
	financial ratio analysis, cash-flow analysis, funds-flow analysis,	8
	comparative financial statement, analysis and interpretation of	
	financial statements, capital budgeting techniques.	
	Total	26

Aml K. Mathus Approved Dean, FA & UD

4ECU11 DCC Commun La	ication MM:75	0L:0T:3P	2 credit
-------------------------	---------------	----------	-------------

List of Experiments

Sr. No.	Name of Experiment
1.	Observe the Amplitude modulated wave form & measure modulation index and demodulation of AM signal.
2.	Harmonic analysis of Amplitude Modulated wave form.
3.	Generation & Demodulation of DSB – SC signal.
4.	Modulate a sinusoidal signal with high frequency carrier to obtain FM signal and demodulation of the FM signal.
5.	Verification of Sampling Theorem.
6.	To study & observe the operation of a super heterodyne receiver.
7.	PAM, PWM & PPM: Modulation and demodulation.
8.	To observe the transmission of four signals over a single channel using TDM-PAM method.
9.	To study the PCM modulation & demodulation and study the effect of channel like attenuation, noise in between modulator & demodulator through the experimental setup.
10.	To study the 4 channel PCM multiplexing & de-multiplexing in telephony system.
11.	To study the Delta & Adaptive delta modulation & demodulation and also study the effect of channel like attenuation, noise in between modulator & demodulator through the experimental setup.
12.	To perform the experiment of generation and study the various data formatting schemes (Unipolar, Bipolar, Manchester, AMI etc.)
13.	To perform the experiment of generation and detection of ASK, FSK, BPSK, DBPSK signals with variable length data pattern.

Amel K. Mathur Approved Dean, FA & UD

Cour se Code	Course Name	Course Outcom e	Details
	cation	CO 1	Understand different analog modulation schemes and evaluate modulation index
	and Digital Communication Lab	CO 2	Able to understand the principle of superhetrodyne receiver
4ECU11	tal Cor Lab	CO 3	Develop time division multiplexing concepts in real time applications
4E	nd Digi	CO 4	Develop and able to comprehend different data formatting schemes
	Analog al	CO 5	Comprehend and analyze the concepts of different digital modulation techniques in communication.

CO-PO Mapping:

Subject	Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
gital ion	CO 1	3	2		1								
Di at	CO 2	3	2	1									
4EC4-21 og and D nmunica Lab	CO 3	3	3	2	2	1							
4EC4-2 Analog and Communic Lab	CO 4	3	3	2	2	1							
Anê	CO 5	3	3	2	2	1							
3: Strongly			gly	2	2: Mo	derat	te		1	: We	ak		

And K. Mathus Approved Dean, FA & UD

4ECU12 DCC Analo	g Circuits Lab MM:75	OL:OT:3P	2 credit
------------------	-------------------------	----------	-------------

List of Experiments

Sr. No.	Name of Experiment
1.	Study and implementation of Voltage Series and Current Series Negative Feedback Amplifier.
2.	Study and implementation of Voltage Shunt and Current Shunt Negative Feedback Amplifier.
3.	Plot frequency response of BJT amplifier with and without feedback in the emitter circuit and calculate bandwidth, gain bandwidth product with and without negative feedback.
4.	Study and implementation of series and shunt voltage regulators and calculate line regulation and ripple factor.
5.	Plot and study the characteristics of small signal amplifier using FET.
6.	Study and implementation of push pull amplifier. Measure variation of output power & distortion with load and calculate the efficiency.
7.	Study and implementation of Wein bridge oscillator and observe the effect of variation in oscillator frequency.
8.	Study and implementation of transistor phase shift oscillator and observe the effect of variation in R & C on oscillator frequency and compare with theoretical value.
9.	Study and implementation of the following oscillators and observe the effect of variation of capacitance on oscillator frequency: (a) Hartley (b) Colpitts.
10.	Study and implementation of the Inverting And Non-Inverting Operational Amplifier.
11.	Study and implementation of Summing, Scaling And Averaging of Operational Amplifier
12.	Implementation of active filters using OPAMP.

Am Approved Dean, FA & UD

Course Code	Cours e Name	Course Outcome	Details
		CO 1	Discuss and observe the operation of a bipolar junction transistor and field-effect transistor in different region of operations.
	s Lab	CO 2	Analyze and design of transistor Amplifier and Oscillators. Importance of negative feedback.
4ECU12	Analog Circuits	CO 3	Analyze the frequency response of amplifiers and operational amplifier circuits. Develop an intuition for analog circuit behavior in both linear and nonlinear operation.
	Analo	CO 4	Design op-amps for specific gain, speed, or switching performance. Compensate operational amplifiers for stability.
		CO 5	Design and conduct experiments, interpret and analyze data, and report results.

CO-PO Mapping:

Subject	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
ts	CO 1	3	2	1	2	2							
Circuits	CO 2	2	3	1	2	3							
	CO 3	1	3	2	3	2							
4EC Analog L	CO 4	1	2	3	2	3							
A	CO 5	1	2	3	3	3							
	3: S	trong	gly	2	2: Mo	derat	e		1	: We	ak		

Approved Dean, FA & UD

4ECU13	DCC/IEC	Microcontrollers Lab	MM:75	0L:0T:2P	1 credit
--------	---------	-------------------------	-------	----------	-------------

List of Experiments

Sr. No.	Name of Experiment							
Folle	owing exercises has to be Performed on 8085							
1.	Write a program for 1.1 Multiplication of two 8 bit numbers 1.2 Division of two 8 bit numbers							
2.	Write a program to arrange a set of data in Ascending and Descending order.							
3.	Write a program to find Factorial of a given number.							
4.	Write a program to generate a Software Delay. 4.1 Using a Register 4.2 Using a Register Pair							
808	5 Interfacing Programs							
5.	5.1 Write a program to Interface ADC with 8085.							
	5.2 Write a program to interface Temperature measurement module with 8085.							
6.	Write a program to interface Keyboard with 8085.							
7.	Write a program to interface DC Motor and stepper motor with 8085.							
Folle	owing exercises has to be Performed on 8051							
8.	Write a program to convert a given Hex number to Decimal.							
9.	Write a program to find numbers of even numbers and odd numbers among 10 Numbers.							
10.	Write a program to find Largest and Smallest Numbers among 10 Numbers.							
11.	11.1 To study how to generate delay with timer and loop.							
	11.2 Write a program to generate a signal on output pin using timer.							
805	1 Interfacing Programs							
12	12.1 Write a program to interface Seven Segment Display with 8051.							
	12.2 Write a program to interface LCD with 8051.							
13	Write a program for Traffic light Control using 8051.							
14	Write a program for Elevator Control using 8051.							

And K. Mathur Approved Dean, FA & UD

Course Code	Course Name	Course Outco me	Details
	q	CO 1	Develop skills related to assembly level programming of microprocessors and microcontroller.
U13	ollers Lab	CO 2	Interpret the basic knowledge of microprocessor and microcontroller interfacing, delay generation, waveform generation and Interrupts.
4ECU13	Microcontrollers	CO 3	Interfacing the external devices to the microcontroller and microprocessor to solve real time problems.
	Mic	CO 4	Illustrate functions of various general purpose interfacing devices.
		CO 5	Develop a simple microcontroller and microprocessor based systems

CO-PO Mapping:

Subject	Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
irs	CO 1	2	1	2	1	3							
13 rolle	CO 2	3	2	1	2	1							
4ECU13 Microcontrollers Lab	CO 3	1	1	3	1	3							
4E croc	CO 4	2	2	1									
Σ	CO 5	1	1	3	2	2		2					
<u>.</u>	3: 5	Stron	gly	2	2: Mo	derat	e		1	: We	ak		

4ECU14 DCC/I	Electronic Measurement and Instrumentation Lab	MM:75	0L:0T:2P	1 credit
--------------	---	-------	----------	-------------

List of Experiments

Sr. No.	Name of Experiment				
1.	Measure earth resistance using fall of potential method.				
2.	Plot V-I characteristics & amp; measure open circuit voltage & amp; short circuit current of a solar panel.				
3.	Measure unknown inductance capacitance resistance using following bridges (a) Anderson Bridge (b) Maxwell Bridge				
4.	To measure unknown frequency & capacitance using Wein's bridge.				
5.	Measurement of the distance with the help of ultrasonic transmitter & amp; receiver.				
6.	Measurement of displacement with the help of LVDT.				
7.	Draw the characteristics of the following temperature transducers (a) RTD (Pt-100) (b) Thermistors.				
8.	Draw the characteristics between temperature & amp; voltage of a K type thermocouple				
9.	Calibrate an ammeter using D.C. slide wire potentiometer				
10.	Measurement of strain/force with the help of strain gauge load cell.				
11.	Study the working of Q-meter and measure Q of coils.				

And K. Mathus

	Calibrate a single-phase energy meter (Analog and Digital) by phantom
12.	loading at different power factor by: (i) Phase shifting transformer (ii) Auto transformer.

Cou rse Cod e	Course Name	Course Outcom e	Details					
		CO 1	Understanding of the fundamentals of					
	ent _at		Electronic Instrumentation. Explain and					
	лГ		identify measuring instruments.					
	ure tio	CO 2	Able to measure resistance, inductance and					
4	isu tai		capacitance by various methods.					
L1	lea	CO 3	Design an instrumentation system that meets					
4ECU14	Electronic Measurement and Instrumentation Lab		desired specifications and requirements.					
4	nic tru	CO 4	Design and conduct experiments, interpret					
	ro		and analyze data, and report results.					
	ect d II	CO 5	Explain the principle of electrical transducers.					
	Eleano		Confidence to apply instrumentation solutions					
			for given industrial applications.					

CO-PO Mapping:

Subject	Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
and ion	CO 1	3	2	1	2	2							
atic	CO 2	2	3	1	2	3							
4ECU14 Electronic Measurement and Instrumentation Lab	CO 3	1	3	2	3	2							
4E Ele asur strui	CO 4	1	2	3	2	3							
L Me	CO 5	1	2	3	3	3							
3: Strongly 2: Modera						derat	te		1	: We	ak		

4ECU20		DECA	MM:50	OL:OT:OP	1 credit
--------	--	------	-------	----------	----------

And K. Mathus Approved Dean, FA & UD

5ECU1	DCC	Electromagnetics Waves	MM:150	3L:1T:0P	4 credit
-------	-----	---------------------------	--------	----------	-------------

Transmission Lines-Equations of Voltage and Current on TX line, Propagation constant and characteristic impedance, and reflection coefficient and VSWR, Impedance Transformation on Loss-less and Low loss Transmission line, Power transfer on TX line, Smith Chart, Admittance Smith Chart, Applications of transmission lines: Impedance Matching, use transmission line sections as circuit elements.

Maxwell's Equations-Basics of Vectors, Vector calculus, Basic laws of Electromagnetics, Maxwell's Equations, Boundary conditions at Media Interface.

Uniform Plane Wave-Uniform plane wave, Propagation of wave, Wave polarization, Poincare's Sphere, Wave propagation in conducting medium, phase and group velocity, Power flow and Poynting vector, Surface current and power loss in a conductor.

Plane Waves at a Media Interface-Plane wave in arbitrary direction, Reflection and refraction at dielectric interface, Total internal reflection, wave polarization at media interface, Reflection from a conducting boundary.

Waveguides- Wave propagation in parallel plate waveguide, Analysis of waveguide general approach, Rectangular waveguide, Modal propagation in rectangular waveguide, Surface currents on the waveguide walls, Field visualization, Attenuation in waveguide.

Radiation-Solution for potential function, Radiation from the Hertz dipole, Power radiated by hertz dipole, Radiation Parameters of antenna, receiving antenna, Monopole and Dipole antenna

Text/Reference Books:

1.	W. Hayt, Engineering Electromagnetics, MGH, India					
2.	E.C. Jordan & K.G. Balmain, Electromagnetic waves & Radiating					
	Systems, Prentice					
	Hall, India					
3.	David Cheng, Electromagnetics, Prentice Hall					
4.	Matthew N O Sadiku, S V Kulkarni, Principle of Electromagnetics, 6 th					
	edition, Oxford higher education					

l K. Mathus Approved Dean, FA & UD

Cours	Cours	Course	
е	е	Outco	Details
Code	Name	me	
	Sa	CO 1	Understand the fundamentals of Electromagnetic waves and develop the basics of vector operations
	Wave	CO 2	Use boundary conditions for Maxwell's equations for analyzing EM waves
5ECU1	Electromagnetic Waves	CO 3	Understand characteristics and wave propagation on high frequency transmission lines, Use sections of transmission line sections for constructing circuit elements
	lectron	CO 4	Characterize uniform plane wave, analyze wave propagation on metallic waveguides in modal form
	Э	CO 5	Understand principle of radiation and radiation characteristics of an antenna

CO-PO Mapping:

Subject	Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
ic	CO 1	3	3	2	3	1							3
1 gnet s	CO 2	3	3	3	3	2							2
5ECU1 romagi Waves	CO 3	3	3	3	3	3							2
5ECU1 Electromagnetic Waves	CO 4	3	3	3	3	3							
E	CO 5	3	3	3	3	3							
	3: 5	Strong]	2	2: Mo	derat	te		1	:We	ak		

Lecture Plan:

Lecture No.	Content to be taught
Lecture 1	Basics of Vectors, Vector calculus and Co-ordinate systems
Lecture 2	Implications of vector calculus in electromagnetic fields and Basic laws of electromagnetic
Lecture 3	Numerical examples including applications of vector operations
Lecture 4	Equations of Voltage and Current on TX line

Aval K. Mathus Approved Dean, FA & UD

Lecture 5	Propagation constant and characteristic impedance, and						
	reflection coefficient and VSWR						
Lecture 6	Numerical examples						
Lecture 7	Impedance Transformation on Loss-less and Low loss						
	Transmission line, Power transfer on TX line						
Lecture 8	Numerical examples						
Lecture 9	Smith Chart, Admittance Smith Chart						
	Applications of transmission lines: Impedance Matching						
Lecture 11	Use transmission line sections as circuit elements						
	Numerical examples						
Lecture 13	Divergence theorem, stokes theorem and Maxwell's Equations						
Lecture 14	Boundary conditions at Media Interface						
Lecture 15	Uniform plane wave and Propagation of wave						
	Wave polarization and Poincare's Sphere						
Lecture 17	Wave propagation in conducting medium, phase and group						
	velocity						
Lecture 18	Numerical examples						
Lecture 19	Power flow and Poynting vector and numerical examples						
Lecture 20	Surface current and power loss in a conductor						
Lecture 21	Plane Waves at a Media Interface-Plane wave in normal and						
	arbitrary direction						
Lecture 22	Reflection and refraction at dielectric interface and review of						
	boundary conditions						
Lecture 23	Review of Reflection coefficients and VSWR from propagating						
	wave point of view						
Lecture 24	Total internal reflection, wave polarization at media interface,						
	Reflection from a conducting boundary						
Lecture 25	Boundary conditions and Wave propagation in parallel plate						
	waveguide						
	Analysis of waveguide general approach						
	Analysis of Rectangular waveguide						
	Modal propagation in rectangular waveguide						
	Surface currents on the waveguide walls, Field visualization						
	Attenuation in waveguide						
	Numerical examples						
	Review of co-ordinate systems						
	Solution for potential function						
	Solution for potential function						
	Radiation mechanism and Radiation from the Hertz dipole						
	Power radiated by hertz dipole						
	Radiation Parameters of antenna						
	Numerical examples						
	Receiving antenna						
Lecture 40	Monopole and Dipole antennas						

And K. Mathus Approved Dean, FA & UD

Content delivery method:

- 1. Chalk and Duster
- 2. Animation

Assignments:

Assignment 1		A charge $Q_A = -20\mu C$ is located at $A(-6,4,7)$, and a charge $Q_B = 50\mu C$ is at $B(5,8,-2)$ in free space $\dot{q}_0 = 8.854 \times 10^{-12} F/m$. Find the force exerted by Q_A by Q_B . Calculate the total charge within the universe. Consider the following expression for field distribution: $\rho_v = \frac{e^{-2r}}{r^2}$, $0 \le \theta \le \pi$, $0 \le \phi \le 2\pi$.
	Q3.	A lossless transmission line is 80 cm long and operates at a frequency of 600 MHz. The line parameters are $L = 0.25$ \mu H/m and $C = 100 pF/m$. Find the characteristics impedance, the phase constant, and phase velocity.
Assignment 2	Q1.	Standing wave measurements on a lossless 75 Ω line show maxima of 18V and minima of 5V. One minimum is located at a scale reading of 30 cm. With the load replaced by a short circuit, two adjacent minima are found at the scale readings of 17 cm and 37 cm. Find VSWR, λ , <i>f</i> , <i>z</i> _L and Γ_L .
	Q2.	Consider a material for which $\mu_r = 1, \delta'_r = 2.5$ and the loss tangent is 0.12. If these values are constant with frequency in the range $0.5 \text{ MHz} \le f \le 100 \text{ MHz}$, calculate $\sigma, \lambda, v_p, \eta$ at 75MHz.
	Q3.	A parallel plate waveguide has plate spacing of 5mm and is filled with glass $(n=1.45)$. What is the maximum frequency at which the guide will operate in the TEM mode only?

Amel K. Mathus Approved Dean, FA & UD

5ECU2	2
-------	---

DCC

Introduction to control problem- Industrial Control examples. Transfer function. System with dead-time. System response. Control hardware and their models: potentiometers, synchros, LVDT, dc and ac servomotors, tacho-generators, electro hydraulic valves, hydraulic servomotors, electro pneumatic valves, pneumatic actuators. Closed-loop systems. Block diagram and signal flow graph analysis.

Feedback control systems- Stability, steady-state accuracy, transient accuracy, disturbance rejection, insensitivity and robustness. proportional, integral and derivative systems. Feed forward and multi-loop control configurations, stability concept, relative stability, Routh stability criterion.

Time response of second-order systems- steady-state errors and error constants. Performance specifications in time-domain. Root locus method of design. Lead and lag compensation.

Frequency-response analysis- Polar plots, Bode plot, stability in frequency domain, Nyquist plots. Nyquist stability criterion. Performance specifications in frequency-domain. Frequency domain methods of design, Compensation & their realization in time & frequency domain. Lead and Lag compensation. Op-amp based and digital implementation of compensators. Tuning of process controllers. State variable formulation and solution.

State variable Analysis- Concepts of state, state variable, state model, state models for linear continuous time functions, diagonalization of transfer function, solution of state equations, concept of controllability & observability.

Introduction to Optimal control & Nonlinear control, Optimal Control problem, Regulator problem, Output regulator, treking problem. Nonlinear system – Basic concept & analysis.

Text/Reference Books:

1.	Gopal. M., "Control Systems: Principles and Design", Tata McGraw- Hill, 1997.
2.	Kuo, B.C., "Automatic Control System", Prentice Hall, sixth edition, 1993.
3.	Ogata, K., "Modern Control Engineering", Prentice Hall, second edition, 1991
4.	Nagrath&Gopal, "Modern Control Engineering", New Age International, New Delhi

il K. Mathus Approved Dean, FA & UD

Course Code	Course Name	Course Outco me	Details
	su	CO 1	Characterize a system mathematically and find its steady state behaviour
Systems	/ster	CO 2	Analyze stability of a system using different tests
		CO 3	Design various controllers
5E	5ECU2	CO 4	Solve linear, non-linear and optimal complex control problems
	Co	CO 5	Designing state model for a given system of equations

CO-PO Mapping:

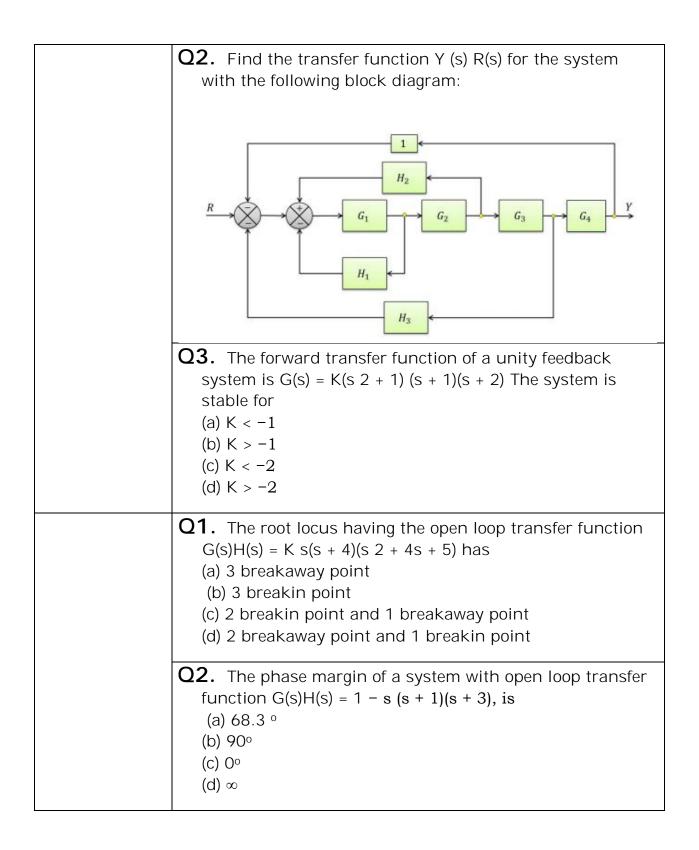
Subject	Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
ю	CO 1	3	2	2	2	2			1				1
ontr ns	CO 2	3	2	2	3	1							
5ECU2 Control Systems	CO 3	2	2	3	3	2							
Sy	CO 4	3	3	2	3	2			1				2
56	CO 5	3	3	3	2	3			1				2
3: Strongly					2: Moderate				1: Weak				

Lecture Plan:

Lecture	Content to be taught				
No.					
Lecture 1	Zero Lecture				
Lecture 2	Industrial Control examples. Transfer function. System with				
	dead-time				
Lecture 3	System response. Control hardware and their models:				
	potentiometers				
Lecture 4	Synchros, LVDT,				
Lecture 5	Dc and ac servomotors, tacho-generators,				
Lecture 6	Electro hydraulic valves, hydraulic servomotors, electro				
	pneumatic valves,				
Lecture 7	Pneumatic actuators				
Lecture 8	Close loop systems				

An Approved Dean, FA & UD

	Block diagram and signal flow graph analysis.
	Disturbance rejection, insensitivity and robustness. proportional
	Integral and derivative systems.
	Feed forward and multi-loop control configurations,
	stability concept, relative stability
	Routh stability criterion.
	Time response of second-order systems
Lecture 16	Steady-state errors and error constants.
	Performance specifications in time-domain.
Lecture 18	Root locus method of design
Lecture 19	Lead and lag compensation.
	Polar plots
Lecture 21	Bode plot, stability in frequency domain,
	Nyquist plots.
Lecture 23	Nyquist stability criterion.
	Performance specifications in frequency-domain.
	Frequency domain methods of design,
	Compensation & their realization in time & frequency domain
	Lead and Lag compensation.
	Op-amp based and digital implementation of compensators.
	Tuning of process controllers.
Lecture 30	State variable formulation and solution.
Lecture 31	Concepts of state, state variable, state model
	State models for linear continuous time functions
Lecture 33	Diagonalization of transfer function
Lecture 34	Solution of state equations,.
Lecture 35	Concept of controllability & observability.
	Introduction to Optimal control & Nonlinear control
Lecture 37	Optimal Control problem
	Regulator problem
Lecture 39	Output regulator, treking problem
	Nonlinear system – Basic concept & analysis


Content delivery method:

- 1. Chalk and Duster
- **2**. PPT
- 3. Animation
- 4. Hand-outs

Assignments:

Assignment 1	Q1. Find is the convolution of e^{-t} with sin(t) applying the
	convolution theorem.

And K. Mathus Approved Dean, FA & UD

l K. Mathus Approved Dean, FA & UD

 Q3. Given the plant transfer function of a servomechanism to be G(s) = 10 s(s+2)(s+8) Design a lead-lag compensator Gc(s) in unity feedback configuration to meet the following specification for step response: (a) Mp = 16.3% (b) The rise time tr = 0.6046 sec (c) The steady state error to a unit ramp input must be equal 0.0125.
equal 0.0125. What is the real part of the dominant poles of the compensated system?

And K. Mathur Approved Dean, FA & UD

5ECU3 DCC Digital Signal Processing	MM:150	3L:0T:0P	3 credit
--	--------	----------	-------------

Discrete time signals: Sequences; representation of signals on orthogonal basis; Sampling and reconstruction of signals; Discrete systems attributes, Z-Transform, Analysis of LSI systems, frequency Analysis, Inverse Systems, Discrete Fourier Transform (DFT), Fast Fourier Transform Algorithm, Implementation of Discrete Time Systems

Design of FIR Digital filters: Window method, Park-McClellan's method. Design of IIR Digital Filters: Butterworth, Chebyshev and Elliptic Approximations; Lowpass, Bandpass, Bandstop and High pass filters.

Effect of finite register length in FIR filter design. Parametric and nonparametric spectral estimation. Introduction to mult-irate signal processing. Application of DSP.

Text/Reference Books:

1.	S.K. Mitra, Digital Signal Processing: A computer based approach.
	ТМН
2.	A.V. Oppenheim and Schafer, Discrete Time Signal Processing,
	Prentice Hall, 1989.
3.	John G. Proakis and D.G. Manolakis, Digital Signal Processing:
	Principles, Algorithms And Applications, Prentice Hall, 1997
4.	L.R. Rabiner and B. Gold, Theory and Application of Digital Signal
	Processing, Prentice Hall, 1992.
5.	J.R. Johnson, Introduction to Digital Signal Processing, Prentice Hall,
	1992.
6.	D.J. De Fatta, J. G. Lucas and W. S. Hodgkiss, Digital Signal
	Processing, John Wiley& Sons, 1988.

Course Outcome:

Course Code	Course Name	Course Outco me	Details
	nals Ig	CO 1	Represent signals mathematically in continuous and discrete time and frequency domain
5ECU3	Sigr essin	CO 2	Get the response of an LSI system to different signals
Ê 2	igital Signal Processing	CO 3	Design of different types of digital filters for various applications
	Di	CO 4	Estimation of spectral parameters
		CO 5	Application of Digital Signal Processing

e K. Mathus Approved Dean, FA & UD

CO-PO Mapping:

Subject	Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
s	CO 1	3	3	3	2	1							1
:U3 Signals ssing	CO 2	3	2	2	2	1							
	CO 3	2	3	3	2	3	2	1					
5E0 Digital Proce	CO 4	3	3	2	3	3							
	CO 5	2	2	2	2	2	2	2	3	1			2
	gly	2	2: Mo	derat	te		1	:We	ak				

Lecture No.	Content to be taught
	Zero Lecture
Lecture 2	Sequences; representation of signals on orthogonal basis
Lecture 3	Sequences; representation of signals on orthogonal basis
Lecture 4	Sequences; representation of signals on orthogonal basis
Lecture 5	Sampling and reconstruction of signals;
Lecture 6	Sampling and reconstruction of signals;
Lecture 7	Sampling and reconstruction of signals;
Lecture 8	Discrete systems attributes
Lecture 9	Discrete systems attributes
Lecture 10	Z-Transform
Lecture 11	Z-Transform
Lecture 12	Z-Transform
	Z-Transform
Lecture 14	Analysis of LSI systems
Lecture 15	Analysis of LSI systems
	frequency Analysis
Lecture 17	frequency Analysis
Lecture 18	Inverse Systems
Lecture 19	Inverse Systems
	Discrete Fourier Transform (DFT
Lecture 21	Fast Fourier Transform Algorithm
	Fast Fourier Transform Algorithm
	Implementation of Discrete Time Systems
Lecture 24	Design of FIR Digital filters

An Approved Dean, FA & UD

Lecture 25	Window method
Lecture 26	Park-McClellan's method
Lecture 27	Design of IIR Digital Filters
Lecture 28	Butterworth, Chebyshev filter
Lecture 29	Elliptic Approximations; Lowpass, Bandpass, Bandstop and High
	pass filters.
Lecture 30	Elliptic Approximations; Lowpass, Bandpass, Bandstop and High
	pass filters.
Lecture 31	Elliptic Approximations; Lowpass, Bandpass, Bandstop and High
	pass filters.
Lecture 32	Effect of finite register length in FIR filter design
Lecture 33	Effect of finite register length in FIR filter design
Lecture 34	Parametric and non-parametric spectral estimation
Lecture 35	Parametric and non-parametric spectral estimation
Lecture 36	Introduction to mult-irate signal processing.
Lecture 37	Introduction to mult-irate signal processing.
Lecture 38	Application of DSP
Lecture 39	Application of DSP
Lecture 40	Spill-over Classes

- 1. Chalk and Duster
- **2**. PPT
- 3. Animation
- 4. Hand-outs

Assignments:

Assignment 1	Q1. Find a function $f(t) = a + bt$ that is perpendicular to another function $g(t) = 1 - t$ in the interval [0, 1].
	Q2. Comment on the linearity, time-invariant and invertibility property of Up-sampler and Down-sampler
	Q3. Why is a filter with a zero phase response necessarily causal?
Assignment 2	Q1. Prove that if the length of wavelet filter is L then the support of scaling function $\varphi(t)$ is L – 1?
	O2. What is the effect of cascading a (1- z ⁻¹) term in the high pass analysis filter?

And K. Mathus Approved Dean, FA & UD

Q3.	Interpret the following equation in the wake of
-	rfect reconstruction: $\tau_0(Z) = 1 \ 2 \ \{H_1(-Z) \ H_0(Z) + H_0(-Z)\}$

An Approved Dean, FA & UD

5ECU4 DCC Microwave Theory and Techniques	MM:150	3L:0T:0P	3 credit
---	--------	----------	-------------

Introduction to Microwaves-History of Microwaves, Microwave Frequency bands; Applications of Microwaves: Civil and Military, Medical, EMI/ EMC.

Mathematical Model of Microwave Transmission-Concept of Mode, Features of TEM, TE and TM Modes, Losses associated with microwave transmission, Concept of Impedance in Microwave transmission.

Analysis of RF and Microwave Transmission Lines-Coaxial line, Rectangular waveguide, Circular waveguide, Strip line, Micro strip line.

Microwave Network Analysis-Equivalent voltages and currents for non-TEM lines, Network parameters for microwave circuits, Scattering Parameters.

Passive and Active Microwave Devices-Microwave passive components: Directional Coupler, Power Divider, Magic Tee, Attenuator, Resonator.

Microwave active components: Diodes, Transistors, Oscillators, Mixers.

Microwave Semiconductor Devices: Gunn Diodes, IMPATT diodes, Schottky Barrier diodes, PIN diodes.

Microwave Tubes: Klystron, TWT, Magnetron.

Microwave Design Principles-Impedance transformation, Impedance Matching, Microwave Filter Design, RF and Microwave Amplifier Design, Microwave Power Amplifier Design, Low Noise Amplifier Design, Microwave Mixer Design, Microwave Oscillator Design.

Microwave Antennas- Antenna parameters, Antenna for ground based systems, Antennas for airborne and satellite borne systems, Planar Antennas.

Microwave Measurements- Power, Frequency and impedance measurement at microwave frequency, Network Analyzer and measurement of scattering parameters, Spectrum Analyzer and measurement of spectrum of a microwave signal, Noise at microwave frequency and measurement of noise figure. Measurement of Microwave antenna parameters.

Microwave Systems-Radar, Terrestrial and Satellite Communication, Radio Aidsto Navigation, RFID, GPS. Modern Trends in Microwaves Engineering-Effect of Microwaves on human body, Medical and Civil applications of microwaves, Electromagnetic interference and Electromagnetic Compatibility (EMI & EMC), Monolithic Microwave ICs, RFMEMS for microwave components, Microwave Imaging.

Text/Reference Books:

1.	S. Y. Liao, Microwave Devices and Circuits, Prentice Hall
2.	D. M. Pozar, Microwave Engineering, John Wiley, India
3.	R.E. Collins, Microwave Circuits, McGraw Hill
4	Annapurna Das and Sisir K Das, Microwave Engineering, McGraw Hill

l K. Mathus Approved Dean, FA & UD

Course Outcome:

Cours	Cours	Course										
e Code	е	Outco	Details									
e coue	Name	me										
	s s	CO 1	Understand various microwave system components their properties									
:U4	Microwave Theory and Techniques	CO 2	Identify different mathematical treatment needed to analyze different microwave circuits and systems									
5ECU4	owav Tec	CO 3	Solve complex problems of microwave signals and systems									
	icre	CO 4	Characterize different microwave components									
	Σø	CO 5	Design microwave systems for different practical applications									

CO-PO Mapping:

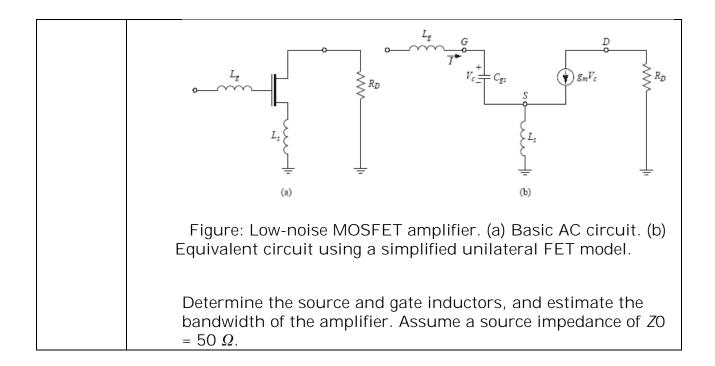
Subject	Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
ave	CO 1	3	2	2	2	2							3
and and	CO 2	3	3	3	3	2							
	CO 3	3	3	3	3	3							
CU4 Mic Theory Technic	CO 4	3	2	3	1	2							
5E(CO 5	3	2	3	3	3							2
	3: 5	Strong	3	2	2: Mo	derat	te		1	:We	ak		

Lecture No.	Content to be taught					
	History of Microwaves, Microwave Frequency bands					
Lecture 2	Applications of Microwaves: Civil and Military, Medical, EMI/ EMC					
Lecture 3	Review of Maxwells equations, Uniform plane wave, Boundary					
	conditions in media interface and wave propagation					
Lecture 4	Review concepts of Mode, Features of TEM, TE and TM Modes					
Lecture 5 Losses associated with microwave transmission, Concept						
	Impedance in Microwave transmission					
Lecture 6	Numerical examples					

Amel K. Mathurs Approved Dean, FA & UD

<u> </u>								
Lecture /	Transmission line and Coaxial line, Modes and Rectangular							
	waveguide							
	ure 8 Analysis of Stripline and Microstrip line							
	Analysis of Circular waveguide, Numerical examples							
	Transmission lines and Microwave Network Analysis							
	Equivalent voltages and currents for non-TEM lines							
Lecture 12	Microwave Network Parameters and Scattering parameters, Inter-							
	relations of the Network parameters							
	Numerical examples							
	Microwave passive components: Directional Coupler							
	Power divider and Magic Tee							
	Microwave resonator							
Lecture 17	Attenuator, Numerical examples							
Lecture 18	Passive and active components, Microwave Diodes, Transistors							
Lecture 19	Microwave oscillators							
Lecture 20	Microwave Mixers, Numerical examples							
Lecture 27	Semiconductor Microwave devices: Gunn diodes							
Lecture 22	IMPATT Diodes, BARITT Diodes							
Lecture 23	Schottkey Barrier Diodes, PIN Diodes							
	Microwave tubes: Klystron							
	Travelling Wave Tubes							
	Lecture 2 Magnetron, Numerical examples							
	Impedance transformation and matching, Smith chart review							
	Microwave filter designing, Numerical example							
Lecture 29	RF and Microwave amplifier design, Power amplifier design							
	Low noise amplifier design, numerical examples							
Lecture 37	Microwave mixer design, numerical examples							
	Microwave oscillator design, numerical examples							
	Antennas and Antenna parameters, numerical examples							
	Antenna for ground based systems, Airborne and satellite borne							
	systems							
Lecture 35	Planar Antennas							
Lecture 36	Radar, Terrestrial and Satellite Communication, Radio Aidsto							
	Navigation							
Lecture 37	RFID and GPS							
	Effect of Microwaves on human body, Medical and Civil							
	applications of microwaves							
Lecture 39	Electromagnetic interference and Electromagnetic Compatibility							
	(EMI & EMC)							
Lecture 40	Monolithic Microwave ICs, RFMEMS for microwave components,							
	Microwave Imaging.							

1. Chalk and Duster


Amel K. Mathurs Approved Dean, FA & UD

2. Animation

Assignments:

Assignmer	f f c	Consider a length of Teflon filled, copper K-band rectangular waveguide having dimensions $a=1.07cm,b=0.43cm$. Find the cutoff frequencies of the first two propagating modes. If the operating frequency is 15 GHz, find the attenuation due to dielectric and conductor losses.
		$\delta_{p} = 9.9$, tan $\delta = 0.001$) for a 50 Ω characteristic impedance. Find the length of this line required to produce a phase delay of 270° at 10 GHz, and compute the total loss on this line, assuming copper conductors.
	Q3.	A two-port network is known to have the following scattering matrix: $S = \begin{bmatrix} 0.15 \angle 0^{\circ} & 0.85 \angle -45^{\circ} \\ 0.85 \angle 45^{\circ} & 0.2 \angle 0^{\circ} \end{bmatrix}$ Determine if the network is reciprocal and lossless. If port 2 is terminated with a matched load, what is the return loss seen at port 1? If port 2 is terminated with a short circuit, what is the return loss seen at port 1?
Assignmer	Q4.	Consider a microstrip resonator constructed from a $\lambda/2$ length of 50 Ω open circuited microstrip line. The substrate is Teflon ($\delta_r = 2.08$, tan $\delta = 0.0004$), with a thickness of 0.159 cm, and the conductors are copper. Compute the required length of the line for resonance at 5 GHz, and the unloaded Q of the resonator. Ignore fringing fields at the end of the line.
	Q5.	Write short notes on a) PIN Diode and b) Schottkey Diode, c) IMPATT Diode.
	Q6.	An Infineon BF1005 <i>n</i> -channel MOSFET transistor having C_{gs} = 2.1 pF and g_m = 24 mS is used in a 900 MHz low-noise amplifier with inductive source degeneration, as shown in figure below.

Avil K. Mathus Approved Dean, FA & UD

l K. Mathus Approved Dean, FA & UD

5ECU5.1 DEC	Probability Theory and Stochastic Processes	MM:150	3L:0T:0P	3 credit
-------------	--	--------	----------	-------------

Sets and set operations; Probability space; Conditional probability and Bayes theorem; Combinatorial probability and sampling models.

Discrete random variables, probability mass function, probability distribution function, example random variables and distributions; Continuous random variables, probability density function, probability distribution function, example distributions;

Joint distributions, functions of one and two random variables, moments of random variables; Conditional distribution, densities and moments; Characteristic functions of a random variable; Markov, Chebyshev and Chernoff bounds;

Random sequences and modes of convergence (everywhere, almost everywhere, probability, distribution and mean square); Limit theorems; Strong and weak laws of large numbers, central limit theorem.

Random process. Stationary processes. Mean and covariance functions. Ergodicity. Transmission of random process through LTI.Power spectral density.

Text/Reference Books:

1.	Η.	Stark	and	J.	Woods,	``Probability	and	Random	Processes	with
	Арр	olicatior	ns to S	Signa	al Process	sing," Third Ec	lition,	Pearson E	ducation	

- **2.** A.Papoulis and S. UnnikrishnanPillai, ``Probability, Random Variables and Stochastic Processes," Fourth Edition, McGraw Hill.
- **3.** K. L. Chung, Introduction to Probability Theory with Stochastic Processes, Springer International
- **4.** P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Probability, UBS Publishers,
- **5.** P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Stochastic Processes, UBS Publishers
- 6. S. Ross, Introduction to Stochastic Models, Harcourt Asia, Academic Press.

il K. Mathus Approved

	5ECU5.2	DEC	Embedded System	MM:150	3L:0T:0P	3 credit	
--	---------	-----	-----------------	--------	----------	-------------	--

The concept of embedded systems design, Embedded microcontroller cores, embedded memories. Examples of embedded systems, Technological aspects of embedded systems: interfacing between analog and digital blocks, signal conditioning, digital signal processing. Sub system interfacing, interfacing with external systems, user interfacing. Design tradeoffs due to process compatibility, thermal considerations, etc., Software aspects of embedded systems: real time programming languages and operating systems for embedded systems.

Text/Reference Books:

1.	J.W. Valvano, "Embedded Microcomputer System: Real Time					
••	Interfacing", Brooks/Cole, 2000.					
2.	Raj Kamal, Embedded System, McGraw Hill					
3.	Jack Ganssle, "The Art of Designing Embedded Systems", Newness, 1999.					
4.	V.K. Madisetti, "VLSI Digital Signal Processing", IEEE Press (NY, USA), 1995.					
5.	David Simon, "An Embedded Software Primer", Addison Wesley, 2000.					
6.	K.J. Ayala, "The 8051 Microcontroller: Architecture, Programming, and Applications", Penram Intl, 1996.					

And K. Mathus Approved

5ECU6.1	DEC	Bio-Medical Electronics	MM:150	2L:0T:0P	2 credit	
---------	-----	-------------------------	--------	----------	-------------	--

Brief introduction to human physiology. Biomedical transducers: displacement, velocity, force, acceleration, flow, temperature, potential, dissolved ions and gases. Bio-electrodes and bio potential amplifiers for ECG, EMG, EEG, etc. Measurement of blood temperature, pressure and flow. Impedance plethysmography. Ultrasonic, X-ray and nuclear imaging. Prostheses and aids: pacemakers, defibrillators, heart-lung machine, artificial kidney, aids for the handicapped. Safety aspects.

Text/Reference Books:

1.	W.F. Ganong, Review of Medical Physiology, 8th Asian Ed, Medical Publishers, 1977.			
2.	J.G. Websster, ed., Medical Instrumentation, Houghton Mifflin, 1978.			
	A.M. Cook and J.G. Webster, eds., Therapeutic Medical Devices, Prentice-Hall, 1982.			
4.	R.S.Khandpur, Handbook of Biomedical Instrumentation, McGraw Hill			

il K. Mathus Approved Dean, FA & UD

5ECU6.2 DEC	Satellite Communication	MM:150	2L:0T:0P	2 credit
-------------	----------------------------	--------	----------	-------------

Introduction to Satellite Communication: Principles and architecture of satellite Communication, Brief history of Satellite systems, advantages, disadvantages, applications and frequency bands used for satellite communication.

Orbital Mechanics: Orbital equations, Kepler's laws, Apogee and Perigee for an elliptical orbit, evaluation of velocity, orbital period, angular velocity etc. of a satellite, concepts of Solar day and Sidereal day.

Satellite sub-systems: Study of Architecture and Roles of various subsystems of a satellite system such as Telemetry, tracking, command and monitoring (TTC & M), Attitude and orbit control system (AOCS), Communication sub-system, power sub-systems etc.

Typical Phenomena in Satellite Communication: Solar Eclipse on satellite, its effects, remedies for Eclipse, Sun Transit Outage phenomena, its effects and remedies, Doppler frequency shift phenomena and expression for Doppler shift. Satellite link budget

Flux density and received signal power equations, Calculation of System noise temperature for satellite receiver, noise power calculation, Drafting of satellite link budget and C/N ratio calculations in clear air and rainy conditions.

Modulation and Multiple Access Schemes: Various modulation schemes used in satellite communication, Meaning of Multiple Access, Multiple access schemes based on time, frequency, and code sharing namely TDMA, FDMA and CDMA.

Text/Reference Books:

1.	Timothy Pratt Charles W. Bostian, Jeremy E. Allnutt: Satellite							
	Communications: Wiley India. 2nd edition 2002.							
2.	Tri T. Ha: Digital Satellite Communications: Tata McGraw Hill, 2009							
3.	Dennis Roddy: Satellite Communication: 4th Edition, McGraw							
	Hill,2009.							

Course Outcome:

Course Code	Course Name	Course Outco me	Details
16	at li	CO 1	Able to understand the dynamics and
5ECU6 .2	itel inc on		architecture of the satellite
56	Sa Cc un	CO 2	Solve numerical problems related to orbital

Amel K. Mathus Approved

		motion
	CO 3	Examine the design of Earth station and
		tracking of the satellites
	CO 4	Evaluate and design link power budget for the
		satellites.
	CO 5	Analyze the analog and digital technologies
		used for satellite communication.

CO-PO Mapping:

Subject	Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
ite on	CO 1	2	2		1	1		1					
Satellite	CO 2	3	3		2	1	1						
5ECU6.2 Satellit	CO 3	2	3	2	3	2		2		1		2	2
	CO 4	3	3	3	2	2				1		1	1
CC CC	CO 5	1	3	2	3	2			1		2		
	3: Strongly					derat	te		1	: We	ak		

Lecture	Content to be taught										
No.											
Lecture 1	Introduction to Satellite Communication										
Lecture 2	Introduction to Satellite Communication										
Lecture 3	Principles and architecture of satellite Communication										
Lecture 4	Brief history of Satellite systems, advantages, disadvantages										
Lecture 5	applications and frequency bands used for satellite										
	communication.										
Lecture 6	Orbital Mechanics: Orbital equations										
Lecture 7	Orbital Mechanics: Orbital equations										
Lecture 8	Kepler's laws, Apogee and Perigee for an elliptical orbit										
Lecture 9	Kepler's laws, Apogee and Perigee for an elliptical orbit										
Lecture 10	evaluation of velocity, orbital period, angular velocity etc. of a										
	satellite										
Lecture 11	concepts of Solar day and Sidereal day										
Lecture 12	Satellite sub-systems										
Lecture 13	Study of Architecture and Roles of various sub-systems of a										

And K. Mathur Approved Dean, FA & UD

	satellite
Locturo 14	Study of Architecture and Roles of various sub-systems of a
Lecture 14	satellite
Locturo 15	Telemetry, tracking, command and monitoring (TTC & M)
	Telemetry, tracking, command and monitoring (TTC & M)
	Attitude and orbit control system (AOCS)
	Communication sub-system and power sub-systems etc.
	Typical Phenomena in Satellite Communication
	Solar Eclipse on satellite, its effects, remedies for Eclipse
	Sun Transit Outage phenomena, its effects and remedies
Lecture 22	Doppler frequency shift phenomena and expression for Doppler shift
Lecture 23	Doppler frequency shift phenomena and expression for Doppler shift
Lecture 24	Satellite link budget
Lecture 25	Satellite link budget
Lecture 26	Flux density and received signal power equations
Lecture 27	Calculation of System noise temperature for satellite receiver
Lecture 28	noise power calculation
	Drafting of satellite link budget and C/N ratio
Lecture 30	Drafting of satellite link budget and C/N ratio
Lecture 31	Calculations in clear air and rainy conditions.
Lecture 32	Modulation and Multiple Access Schemes
Lecture 33	Various modulation schemes used in satellite communication
Lecture 34	Meaning of Multiple Access, Multiple access schemes based on
	time
Lecture 35	Multiple access schemes based on frequency
Lecture 36	TDMA
Lecture 37	FDMA and CDMA
Lecture 38	FDMA and CDMA
Lecture 39	Spill over class
Lecture 40	Spill over class

- 1. Chalk and Duster
- **2**. PPT
- 3. Hand-outs

Sample assignments:

Assignment 1	Q1. A Satellite is orbiting in an elliptical orbit with
	apogee height at 20000 Km and perigee height at
	400 Km. Calculate the ratio of velocity at perigee to
	that at apogee.

And K. Mathus Approved

	Q2. A satellite is orbiting in a circular orbit which is 1000 Km away from the surface of the earth. Estimate number of times in a day, the satellite will be overhead from a particular location on the earth.
	Q3. Telemetry system of the satellite samples in sequence 40 sensors each producing 20 bits, adds 240 bits overhead to form a frame and transmits the data at 1 Kbps to Control Earth Station 42,000 km away. How long does it take to receive a complete telemetry data frame at control earth station after the last bit of the frame is transmitted by the telemetry?
Assignment 2	Q1. The difference between the farthest and the closest point in a satellite's elliptical orbit from the surface of the earth is 30000 Km, and the sum of the distances is 50000 Km, if the mean radius of the earth is considered to be 6400 Km, determine the eccentricity and length of semi-major axis of the orbit.
	Q2. A 36 MHZ bandwidth limited transponder is allotted with voice only carrier in FDMA mode with 45 KHz separation between centre frequency of carriers. Assuming 40% voice activity, what will be the number of carriers?
	Q3. A receiver at 290K is having noise figure of 4 dB. Calculate the noise power density of the receiver.

And K. Mathur Approved Dean, FA & UD

5ECU11	DCC	RF Simulation Lab	MM:75	0L:0T:3P	2 credit
--------	-----	-------------------	-------	----------	-------------

Sr. No.	Name of Experiment
1.	Study of field pattern of various modes inside a rectangular and circular waveguide.
2.	Study of field pattern of various modes inside a rectangular cavity resonator.
3.	Find the change in characteristics impedance and reflection coefficients of the transmission line by changing the dielectric properties of materials embedded between two conductors.
4.	Design and simulate the following Planar Transmission Lines: (a) Strip and micro-strip lines (b) Parallel coupled strip line (c) Coplanar and Slot lines (d) Determine their field patterns and characteristic impedance.
5.	Design and simulate the following: (a) 3-dB branch line coupler (b) Wilkinson power divider (c) Hybrid ring (d) Backward wave coupler (e) Low pass filters (f) Band pass filters
6.	Design RF amplifier using microwave BJT.
7.	Design RF amplifier using microwave FET.

Amel K. Mathur Approved Dean, FA & UD

5ECU12	DCC	Digital Signal Processing Lab	MM:75	0L:0T:2P	1 credit
--------	-----	----------------------------------	-------	----------	-------------

Sr. No.	Name of Experiment (Simulate using MATLAB environment)
1.	Generation of continuous and discrete elementary signals (impulse, unit-step, ramp) using mathematical expression.
2.	Perform basic operations on signals like adding, subtracting, shifting and scaling.
3.	Perform continuous and discrete time Convolution (using basic definition).
4.	Checking Linearity and Time variance property of a system using convolution, shifting.
5.	To generate and verify random sequences with arbitrary distributions, means and variances for following: (a) Rayleigh distribution (b) Normal distributions: N(0,1). (c) Gaussion distributions: N (m, x) (d) Random binary wave.
6.	To find DFT / IDFT of given DT signal.
7.	N-point FFT algorithm.
8.	To implement Circular convolution.
9.	MATLAB code for implementing z-transform and inverse z-transform.
10.	Perform inverse z-transform using residue z MATLAB function.
11.	MATLAB program to find frequency response of analog LP/HP filters.
12.	To design FIR filter (LP/HP) using windowing (rectangular, triangular, Kaiser) technique using simulink.

And K. Mathus Approved Dean, FA & UD

Course Outcome:

Course Code	Course Name	Course Outcom e	Details				
	Digital Signal Processing Lab	CO 1	Simulate, synthesize and process communication signals using software tools such as MATLAB.				
22		CO 2	To understand the difference between analog, discrete & digital signals & their processing.				
5EC4-22		CO 3	Analyse & process signals in communication systems to meet a particular requirement.				
5E		CO 4	Apply z-transform, DFT, FFT to analyse and design DSP systems.				
	Dig	CO 5	Design of various basic digital filters.				

CO-PO Mapping:

Subject	Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
_ Q	CO 1	3	2			3							2
U12 Signal ing Lab	CO 2	3	2	1									
5ECU12 Digital Sig Processing	CO 3	3	3	2	1	1	2						1
	CO 4	3	3	3	2	3							1
	CO 5	3	3	3	2	3	1						1
	3: Strongly				2: Moderate				1: Weak				

5ECU13	DCC	Microwave Lab	MM:75	OL:0T:3P	1 credit	
--------	-----	---------------	-------	----------	-------------	--

Sr. No.	Name of Experiment
1.	 Study of various microwave components and instruments like frequency meter, attenuator, detector and VSWR meter. (a) Measurement of guide wavelength and frequency using a X-band slotted line setup. (b) Measurement of low and high VSWR using a X-band slotted line setup.
2.	Introduction to Smith chart, measurement of SWR, shift in minimum standing wave with unknown load and calculation of unknown load impedance using Smith chart.
3.	Study the behavior of terminated coaxial transmission lines in time and frequency domain.
4.	 (a) Draw the V-I characteristics of a Gunn diode and determine the output power and frequency as a function of voltage. (b) Study the square wave modulation of microwave signal using PIN diode.
5.	Study and measurement of resonance characteristics of a micro-strip ring resonator using power meter and determination of the substrate dielectric constant.
6.	Study and measure the power division and isolation characteristics of a micro-strip 3dB power divider.
7.	Study of rat race hybrid ring (equivalent of waveguide Magic-Tee) in micro-strip.
8.	 (a) To study the characteristics of micro-strip 3dB branch line coupler, strip line backward wave coupler as a function of frequency and compare their bandwidth. (b) Measure the microwave input, direct, coupled and isolated powers of a backward wave strip line coupler at the centre frequency using a power meter. From the measurements calculate the coupling, isolation and directivity of the coupler.

Amel K. Mathus Approved Dean, FA & UD

5ECU13 DCC	Microwave Lab	MM:75	0L:0T:2P	1 credit	
------------	---------------	-------	----------	-------------	--

Sr. No.	Name of Experiment
1.	 Study of various microwave components and instruments like frequency meter, attenuator, detector and VSWR meter. (a) Measurement of guide wavelength and frequency using a X-band slotted line setup. (b) Measurement of low and high VSWR using a X-band slotted line setup.
2.	Introduction to Smith chart, measurement of SWR, shift in minimum standing wave with unknown load and calculation of unknown load impedance using Smith chart.
3.	Study the behavior of terminated coaxial transmission lines in time and frequency domain.
4.	 (a) Draw the V-I characteristics of a Gunn diode and determine the output power and frequency as a function of voltage. (b) Study the square wave modulation of microwave signal using PIN diode.
5.	Study and measurement of resonance characteristics of a micro-strip ring resonator using power meter and determination of the substrate dielectric constant.
6.	Study and measure the power division and isolation characteristics of a micro-strip 3dB power divider.
7.	Study of rat race hybrid ring (equivalent of waveguide Magic-Tee) in micro-strip.
8.	 (a) To study the characteristics of micro-strip 3dB branch line coupler, strip line backward wave coupler as a function of frequency and compare their bandwidth. (b) Measure the microwave input, direct, coupled and isolated powers of a backward wave strip line coupler at the centre frequency using a power meter. From the measurements calculate the coupling, isolation and directivity of the coupler.

And K. Mathus Approved Dean, FA & UD

5ECU14 DCC/IE	PCB Design lab/EC Workshop	MM:75	0L:0T:2P	1 credit
---------------	-------------------------------	-------	----------	-------------

Sr. No.	Name of Experiment
1.	Identification, Study & Testing of various electronic components : (a) Resistances-Various types, Colour coding (b) Capacitors-Various types, Coding, (c) Inductors (d) Diodes (e) Transistors (f) SCRs (g) ICs (h) Photo diode (i) Photo transistor (j) LED (k) LDR (l) Potentiometers
2.	Study of symbols for various Electrical & Electronic Components, Devices, Circuit functions etc.
3.	Soldering & desoldering practice.
4	Step down transformer winding of less than 5VA.
5.	Fabrication of a PCB for a DC regulated power supply.
6.	Identification of various types of Printed Circuit Boards (PCB) and soldering Techniques.
7.	Introduction to PCB And OrCAD Design software
8.	(a). Artwork & printing of a simple PCB.(b). Etching & drilling of PCB.
9.	Wiring & fitting shop: Fitting of power supply along with a meter in cabinet.
10.	To study the specifications and working of a Transistor radio kit and perform measurements on it.

5ECU20	DECA N	MM:50	OL:OT:OP	1 credit
--------	--------	-------	----------	-------------

Amel K. Mathur Approved Dean, FA & UD

6ECU1	DCC	Computer Network	MM:150	3L:1T:0P	4 credit
-------	-----	------------------	--------	----------	-------------

Introduction to computer networks and the Internet: Application layer: Principles of network applications, The Web and Hyper Text Transfer Protocol, File transfer, Electronic ail, Domain name system, Peer-to-Peer file sharing, Socket programming, Layering concepts.

Switching in networks: Classification and requirements of switches, a generic switch, Circuit Switching, Time-division switching, Space-division switching, Crossbar switch and evaluation of blocking probability, 2-stage, 3-stage and n-stage networks, Packet switching, Blocking in packet switches, Three generations of packet switches, switch fabric, Buffering, Multicasting, Statistical Multiplexing.

Transport layer: Connectionless transport - User Datagram Protocol, Connection oriented transport – Transmission Control Protocol, Remote Procedure Call. Congestion Control and Resource Allocation: Issues in Resource Allocation, Queuing Disciplines, TCP congestion Control, Congestion Avoidance Mechanisms and Quality of Service.

Network layer: Virtual circuit and Datagram networks, Router, Internet Protocol, Routing algorithms, Broadcast and Multicast routing

Link layer: ALOHA, Multiple access protocols, IEEE 802 standards, Local Area Networks, addressing, Ethernet, Hubs, Switches.

Text/Reference Books:

1.	J.F. Kurose and K. W. Ross, "Computer Networking – A top down approach featuring the Internet", Pearson Education, 5th Edition
2.	L. Peterson and B. Davie, "Computer Networks – A Systems Approach" Elsevier Morgan Kaufmann Publisher, 5th Edition.
3.	T. Viswanathan, "Telecommunication Switching System and Networks", Prentice Hall
4.	S. Keshav, "An Engineering Approach to Computer Networking", Pearson Education
5.	B. A. Forouzan, "Data Communications and Networking", Tata McGrawHill,4th Edition
6.	Andrew Tanenbaum, "Computer networks", Prentice Hall
7.	D. Comer, "Computer Networks and Internet/TCP-IP", Prentice Hall
8.	William Stallings, "Data and computer communications", Prentice Hall

il K. Mathus Approved

Course Outcome:

Course Code	Course Name	Course Outco me	Details
	Networks	CO 1	Describe the significance and concepts of computer networks and services offered at each layer.
U1		CO 2	Analyse and appreciate the layered model for computer networking.
6ECU1	outer	CO 3	Identify basic protocols and design issues for layered model.
	Computer	CO 4	Design and implement protocols related to various networking layers.
	0	CO 5	Explain different switching in networks.

CO-PO Mapping:

Subject	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
	CO 1	3	2	1									
1 ter ks	CO 2	2	3	1	2								
6ECU1 Computer Networks	CO 3	1	3	2	3								
6 Cor Nei	CO 4	1	2	3	2								
	CO 5	3	1										
	3: 5	3: Strongly 2: Moderate 1: Weak											

Lecture No.	Content to be taught
Lecture 1	Zero Lecture: Overview of subject
Lecture 2	Introduction to computer networks and the Internet
Lecture 3	Application layer, Principles of network applications
Lecture 4	Detail explanation of web and Hyper Text Transfer Protocol
Lecture 5	File transfer, Electronic mail services
Lecture 6	Domain name system, Peer-to-Peer file sharing

Aml K. Mathur Approved Dean, FA & UD

Lecture 7	Socket programming				
Lecture 8	Layering concepts of networks				
	Introduction of Switching in networks: Classification and				
	requirements of switches				
Lecture 10	A generic switch, Circuit Switching,				
	Time-division switching, Space-division switching				
	Crossbar switch and evaluation of blocking probability				
	2-stage, 3-stage and n-stage networks				
	2-stage, 3-stage and n-stage networks continued.				
	Packet switching, Blocking in packet switches, Three generations				
	of packet switches				
Lecture 16	Switch fabric, Buffering, Multicasting				
	Statistical Multiplexing, summary of switching networks.				
	Introduction of Transport layer: Connectionless transport - User				
	Datagram Protocol				
Lecture 19	Connection-oriented transport – Transmission Control Protocol				
	Remote Procedure Call				
Lecture 21	Congestion Control and Resource Allocation: Issues in Resource				
	Allocation, Queuing				
	Disciplines				
Lecture 22	Congestion Control and Resource Allocation: Issues in Resource				
	Allocation, Queuing				
	Disciplines Continued				
Lecture 23	TCP congestion Control				
	Congestion Avoidance Mechanisms and Quality of Service				
Lecture 25	Congestion Avoidance Mechanisms and Quality of Service				
	continued.				
Lecture 26	Summary of transport layer and congestion control				
Lecture 27	Introduction to network layer, Virtual circuit and datagram				
	network,				
Lecture 28	Routers, Internet Protocol				
Lecture 29	Internet Protocol				
Lecture 30	Routing Algorithms				
Lecture 31	Broadcast and multicast routing				
Lecture 32	Broadcast and multicast routing continued and review of network				
	layer				
Lecture 33	Introduction to data link layer and ALOHA				
	Detail explanation of Multiple access protocols				
Lecture 35	IEEE 802 standards				
Lecture 36	Local area Networks				
Lecture 37	Data link layer addressing				
Lecture 38	Ethernet, Hub				
Lecture 39					
Lecture 40	Summary of data link layer and Review of whole syllabus				

An Approved Dean, FA & UD

- 1. Chalk, Board and Duster
- **2**. PPT
- 3. Animation
- 4. Hand-outs

Assignments:

Assignment 1	Q1. (a)Consider an FTP session in which the user three separate <i>get</i> commands. How many TCP connections are created during this session? Explain.
	(b) An IMAP server keeps track of which email messages have been read by a user and which have not. POP allows you to download an email message from the server while leaving it stored on the server, but does not remember which ones you've read. What are the pros and cons of these two approaches?
	Q2 .Consider a 100 Mb/s link, preceded by a queue that can hold 1000 packets. Suppose packets with an average packet length of 125 bytes are arriving at the queue, at the rate of 85 thousand packets per second. What is the average number of packets in the queue? How long does it take to transmit a packet over the link? What is the average amount of time that a packet waits in the queue?
	Q3. (a)How many bytes are there in the UDP packet header? How many in the TCP header?(b)Give two reasons you might prefer to implement an
	application using UDP, rather than TCP.
(b)	Q1 .Suppose a host receives 10 IP packets and the id field in these packets are: 3, 7, 8, 8, 8, 7, 9, 13, 3, 13. How many distinct packets were sent by the original host?
	Q2 .Consider a router with 10 Gb/s links and designed for use in wide area networks with typical round-trip times of 200 ms. If the router has 16 links, how much memory is required for packet buffers, assuming each buffer is dimensioned according to the standard rule-of-thumb.

Approved Ari Dean, FA & UD

Q3. (a) Consider a 100 Mb/s version of Ethernet using CSMA/CD. If the maximum separation between two nodes is 5 km, how efficient is the network if all packets have the minimum length? What if they have the maximum length?
(b) How long is the payload of an Ethernet frame carrying an IPv4 packet that contains a minimum size UDP packet. How long is the frame if the IPv4 packet is a TCP packet with 40 bytes of user data?
(C) How many distinct IP multicast addresses are there? How many distinct Ethernet multicast addresses are available for use with IP? Discuss how the difference in these two numbers might affect the operation of IP multicast, in the context of Ethernet LANs.

Approved Dean, FA & UD

6ECU2 DC	Fiber Optic Communications	MM:150	3L:1T:0P	4 credit
----------	-------------------------------	--------	----------	-------------

Introduction to vector nature of light, propagation of light, propagation of light in a cylindrical dielectric rod, Ray model, wave model. Different types of optical fibers, Modal analysis of a step index fiber.

Signal degradation on optical fiber due to dispersion and attenuation. Fabrication of fibers and measurement techniques like OTDR

Optical sources - LEDs and Lasers, Photo-detectors - pin-diodes, APDs, detector responsivity, noise, optical receivers. Optical link design - BER calculation, quantum limit, power penalties.

Optical switches - coupled mode analysis of directional couplers, electrooptic switches. Optical amplifiers - EDFA, Raman amplifier.

WDM and DWDM systems. Principles of WDM networks.

Nonlinear effects in fiber optic links. Concept of self-phase modulation, group velocity dispersion and solition based communication.

Text/Reference Books:

-	
1.	J. Keiser, Fibre Optic communication, McGraw-Hill, 5th Ed. 2013
	(Indian Edition).
2.	T. Tamir, Integrated optics, (Topics in Applied Physics Vol.7), Springer-
	Verlag, 1975.
3.	J. Gowar, Optical communication systems, Prentice Hall India, 1987.
4.	S.E. Miller and A.G. Chynoweth, eds., Optical fibres
	telecommunications, Academic Press, 1979.
5.	G. Agrawal, Nonlinear fibre optics, Academic Press, 2nd Ed. 1994.
6.	G. Agrawal, Fiber optic Communication Systems, John Wiley and
	sons, New York, 1997
7.	F.C. Allard, Fiber Optics Handbook for engineers and scientists,
	McGraw Hill, New
	York (1990).G. Streetman, and S. K. Banerjee, "Solid State Electronic
	Devices," 7th edition,
	Pearson, 2014.

Course Outcome:

Course Code	Course Name	Course Outco me	Details
6ECU2	Fiber Optic ommun cation	CO 1	Understand the basics of fiber-optic communication system, components and significance
\$	i C C C	CO 2	Analysis of different types of Optical fiber

l K. Mathus Approved Dean, FA & UD

	based on ray and wave model
CO 3	Able to understand channel impairments like
	losses and dispersion
CO 4	Assess and compare optical sources, detectors
	and their application
CO 5	Design optical networks and understand non-
	linear effects in optical fibers

CO-PO Mapping:

Subject	Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
	CO 1	3	2		1								1
Fiber ic icatio	CO 2	3	3	2	2	1							
CU2 Fi Optic nunic	CO 3	3	2	1	1	2	1						
6ECU2 Fiber Optic Communication	CO 4	3	3	3	3	2	2	1	2				1
υ Γ Ο	CO 5	2	2	3	2	1					1	2	2
	3: 5	Strong	gly	2	2: Mo	derat	te		1	: We	ak		

Lecture	Content to be taught
No.	
Lecture 1	Introduction
Lecture 2	Introduction to vector nature of light, propagation of light
Lecture 3	propagation of light in a cylindrical dielectric rod
Lecture 4	Ray model
Lecture 5	Wave model
Lecture 6	Different types of optical fibers, Modal analysis of a step index
	fiber.
Lecture 7	Modal analysis of a step index fiber.
Lecture 8	Modal analysis of a step index fiber.
Lecture 9	Signal degradation on optical fiber
Lecture 10	Signal degradation on optical fiber
Lecture 11	Signal degradation on optical fiber
Lecture 12	Dispersion
Lecture 13	Attenuation
Lecture 14	Fabrication of fibers

Amel K. Mathurs Approved Dean, FA & UD

Looturo 15	maggyramant taghniguag			
	measurement techniques			
	measurement techniques			
Lecture 17				
Lecture 18	Optical sources			
Lecture 19	LEDs			
Lecture 20	Lasers			
	Photo-detectors			
Lecture 22	pin-diodes			
Lecture 23	APDs			
	detector responsivity characteristics			
Lecture 25	Noise and optical receivers			
	6 Optical link design			
Lecture 27	7 BER calculation			
Lecture 28	quantum limit and power penalties			
	Optical switches - coupled mode analysis of directional couplers,.			
	electro-optic switches			
	Optical amplifiers - EDFA			
Lecture 32	Raman amplifier			
	WDM and DWDM systems			
Lecture 34	Principles of WDM networks			
Lecture 35	35 Nonlinear effects in fiber optic links			
	36 Concept of self-phase modulation			
	7 Group velocity dispersion			
Lecture 38	solition based communication			
Lecture 39	Spill over class			
Lecture 40	Spill over class			

- 1. Chalk and Duster
- **2**. PPT
- 3. Hand-outs

Sample assignments:

	0.4	
Assignment 1	Q1.	Consider a planar mirror waveguide with $n = 1.45$,
		$d = 1 \ \mu m$ at $\lambda_0 = 0.85 \ \mu m$. Estimate the propagation
		constant and effective index of the first mode.
	Q2.	A step index multimode fiber with NA = 0.2
		supports approximately 1000 modes at 850 nm
		wavelength. What is core diameter?
	Q3.	Find the value of normalized frequency (V) for
		given fiber with $n_1 = 1.45$, $\Delta = 0.003$, a = 4µm for
		wavelength $\lambda_0 = 1300$ nm.
Assignment 2	Q1.	Calculate the pulse broadening in a multimode

Amel K. Mathurs Approved

	step index fiber with n_1 = 1.47, n_2 = 1.465 and fiber length of 2 km.
Q2.	Consider an LED source at $\lambda_0 = 880$ nm with a spectral width of 40 nm. Calculate the material dispersion coefficient in ps/km-nm in fused silica glass with $d^2n/d\lambda_0^2 = 0.03 \ \mu m^{-2}$.
Q3.	Consider a step- index optical fiber with n_1 = 1.472, n_2 = 1.431 and a= 2 µm. Calculate the approximate group velocity at wavelength 1550 nm.

Amel K. Mathus Approved Dean, FA & UD

6ECU3 DCC Antenna Propaga	MM·150 31·01·0P	3 credit
------------------------------	-------------------	-------------

Fundamental Concepts-Physical concept of radiation, Radiation pattern, near-and far-field regions, reciprocity, directivity and gain, effective aperture, polarization, input impedance, efficiency, Friis transmission equation, radiation integrals and auxiliary potential functions.

Radiation from Wires and Loops-Infinitesimal dipole, finite-length dipole, linear elements near conductors, dipoles for mobile communication, small circular loop.

Aperture and Reflector Antennas-Huygens' principle, radiation from rectangular and circular apertures, design considerations, Babinet's principle, Radiation from sectoral and pyramidal horns, design concepts, prime-focus parabolic reflector and cassegrain antennas.

Broadband Antennas-Log-periodic and Yagi-Uda antennas, frequency independent antennas, broadcast antennas.

Micro strip Antennas-Basic characteristics of micro strip antennas, feeding methods, methods of analysis, design of rectangular and circular patch antennas.

Antenna Arrays-Analysis of uniformly spaced arrays with uniform and nonuniform excitation amplitudes, extension to planar arrays, synthesis of antenna arrays using Schelkunoff polynomial method, Woodward-Lawson method.

Basic Concepts of Smart Antennas- Concept and benefits of smart antennas, fixed weight beam forming basics, Adaptive beam forming. Different modes of Radio Wave propagation used in current practice.

Text/Reference Books:

1.	J.D. Kraus, Antennas, McGraw Hill, 1988
2.	C.A. Balanis, Antenna Theory - Analysis and Design, John Wiley, 1982
3.	R.E. Collin, Antennas and Radio Wave Propagation, McGraw Hill, 1985
4.	S. Silver, Microwave Antenna Theory and Design, McGrawHill, 1949
5.	I.J. Bahl and P. Bhartia, Micro Strip Antennas, Artech House, 1980

l K. Mathus Approved Dean, FA & UD

Course Outcome:

Cours	Cours	Course		
е	е	Outco	Details	
Code	Name	me		
	а	CO 1	Understand various types of antennas and antenna properties	
]3	s and ation	CO 2	Analyze the properties of different types of antennas and their design	
CCL	aga aga	CO 3	Solve complex problems related to antennas	
6E	Solution			
	A -	CO 5	Designing different antennas to meet different specifications	

CO-PO Mapping:

Subject	Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
	CO 1	3	2	1	1	2							
6ECU3 Antennas and Propagation	CO 2	2	3	3	2	2							
	CO 3	3	3	3	3	3							
	CO 4	2	3	3	3	3							
	CO 5	2	3	3	3	3							
3: Strong				2: Moderate				•	1	: We	ak		

Lecture No.	Content to be taught				
Lecture 1	Introduction to Antennas and their applications, review of Maxwells equations				
Lecture 2	Physical concept of radiation, Radiation pattern, near-and far-field regions				
Lecture 3	Reciprocity, Input impedance, Polarization				
Lecture 4	Directivity and Gain, Effective aperture, Efficiency and Numerical examples				
Lecture 5	Friis transmission equation and numerical examples				

Avil K. Mathus Approved Dean, FA & UD

Lecture 6	Radiation integrals and Auxiliary potential functions				
	Radiation integrals and Auxiliary potential functions (contd.)				
	Radiation from Infinitesimal dipole				
	The finite-length dipole				
Lecture I	Review of boundary conditions and Linear elements near				
	conductors				
	dipoles for mobile communication, small circular loop				
	Numerical examples				
Lecture 1	Huygens' principle and aperture antennas, radiation from				
	rectangular aperture				
	Radiations from circular apertures, Modes				
	Design considerations				
Lecture 16	Babinet's Principle and Horn antennas, Radiation from Sectoral				
	Horn				
	Radiation from Pyramidal Horn antennas and design concepts				
	Reflector antennas and feeds				
Lecture 1	Prime-focus Parabolic reflector and Cassegrain antennas				
Lecture 20	Numerical examples				
Lecture 21	ure 2 Impedance matching, resonance and Broadband antennas, Log-				
	periodic antennas				
Lecture 22	Yagi-Uda antennas, frequency independent antennas				
Lecture 23	2 Boradcast antennas, numerical examples				
Lecture 24	Basic characteristics of micro strip antennas, feeding methods				
Lecture 25	Methods of analysis				
Lecture 26	The rectangular microstrip antenna, its modes and radiation				
	behavior				
Lecture 2	The circular microstrip antenna, its modes and radiation behavior				
Lecture 28	28 Designing rectangular and circular patch antennas				
Lecture 2	Lecture 2 Numerical examples				
Lecture 30	Arrays, their basic properties and their applications				
	3 Analysis of uniformly spaced arrays with uniform excitation				
	Lecture 32 Analysis of uniformly spaced arrays with non-uniform excitation				
	amplitudes				
Lecture 33	The Binomial array, The Tchebysheff array, Taylor array				
	The planar arrays, rectangular arrays				
	re 3: Circular array, Cheng-Sheng array, Numerical examples				
	Lecture 3 Synthesis of arrays, Schelkounff Polynomial method				
	WoodyardLawsons method				
	Lecture 38 Antennas- Concept and benefits of smart antennas, fixed weight				
	beam forming basics				
Lecture 39	Adaptive beam forming				
	Different modes of Radio Wave propagation used in current				
	practice.				
L					

America K. Mathur Approved Dean, FA & UD

- 1. Chalk and Duster
- **2**. PPT
- 3. Animation

Assignments:

		7
Assignment 1	Q1.	The radial component of the radiated power density of an infinitesimal linear dipole of length $\ell \ll \lambda$ is given by $\mathbf{W}_{av} = \hat{a}_r W_r = \hat{a}_r A_0 \frac{\sin^2 \theta}{r^2}$ where A_0 is the peak value of the power density, θ is the usual spherical coordinate, and \hat{a}_r is the radial unit vector. Determine the maximum directivity of the antenna and express the directivity as a function of the directional angles θ and ϕ .
	Q2.	A resonant half-wavelength dipole is made out of copper (σ = 5.7×10 ⁷ S/m) wire. Determine the conduction-dielectric (radiation) efficiency of the dipole antenna at f = 100 MHz if the radius of the wire b is 3 × 10–4 λ , and the radiation resistance of the $\lambda/2$ dipole is 73 ohms.
	Q3.	Find the radiation resistance of a single-turn and an eight-turn small circular loop. The radius of the loop is $\lambda/25$ and the medium is free-space.
Assignment 2	Q1.	Write short notes on YagiUda antennas, and log periodic antennas.
	Q2.	Design a rectangular microstrip antenna using a substrate (RT/Duroid 5880) with dielectric constant of 2.2, $h = 0.1588$ cm (0.0625 inches) so as to resonate at 10 GHz
	Q3.	What are the needs of smart antennas? What are the difficulties with smart array systems? What are the differences between adaptive and switched beam forming techniques?

Amel K. Mathus Approved Dean, FA & UD

6ECU4 DCC Information Theory and coding	MM:150	3L:0T:0P	3 credit
--	--------	----------	-------------

Basics of information theory- entropy for discrete ensembles; Shannon's noiseless coding theorem; Encoding of discrete sources.

Markov sources- Shannon's noisy coding theorem and converse for discrete channels; Calculation of channel capacity and bounds for discrete channels; Application to continuous channels.

Techniques of coding and decoding; Huffman codes and uniquely detectable codes; Cyclic codes, convolutional arithmetic codes.

Text/Reference Books:

1. N. Abramson, Information and Coding, McGraw Hill, 1963.

2.RanjanBose,Information Theory Coding &Cryptography,McGraw Hill

3. M. Mansurpur, Introduction to Information Theory, McGraw Hill, 1987.

4. R.B. Ash, Information Theory, Prentice Hall, 1970.

5. Shu Lin and D.J. Costello Jr., Error Control Coding, Prentice Hall, 1983.

Amel K. Mathurs Approved

Introduction and Historical Background.

Scaling Effects. Micro/Nano Sensors, Actuators and Systems overview: Case studies.

Review of Basic MEMS fabrication modules: Oxidation, Deposition Techniques, Lithography (LIGA), and Etching. Micromachining: Surface Micromachining, sacrificial layer processes, Stiction; Bulk Micromachining, Isotropic Etching and Anisotropic Etching, Wafer Bonding.

Mechanics of solids in MEMS/NEMS: Stresses, Strain, Hookes's law, Poisson effect, Linear Thermal Expansion, Bending; Energy methods, Overview of Finite Element Method, Modeling of Coupled Electromechanical Systems.

Text/Reference Books:

1.	G. K. Ananthasuresh, K. J. Vinoy, S. Gopalkrishnan K. N. Bhat, V. K. Aatre, Micro and Smart Systems, Wiley India, 2012.						
2.	Tai-Ran Hsu,MEMS and Microsystems:Design and Manufacture,McGraw Hill						
3.	S. E.Lyshevski, Nano-and Micro-Electromechanical systems: Fundamentals of Nano-and Microengineering (Vol. 8). CRC press, (2005).						
4.	S. D. Senturia, Microsystem Design, Kluwer Academic Publishers, 2001.						
5.	M. Madou, Fundamentals of Microfabrication, CRC Press, 1997.						
6.	G. Kovacs, Micromachined Transducers Sourcebook, McGraw-Hill, Boston, 1998.						
7.	M.H. Bao, Micromechanical Transducers: Pressure sensors, accelerometers, and Gyroscopes, Elsevier, New York, 2000.						

Course Outcome:

Course Code	Course Name	Course Outco me	Details
6ECU5.1	oduc n to :MS	CO 1	Understanding of historical background of MEMS devices.
6EC	Intro tior ME	CO 2	Appreciate the underlying working principles of MEMS and NEMS devices.

l K. Mathus Approved Dean, FA & UD

CO 3	Design and model MEM devices.
CO 4	Understanding of core electronics fabrication techniques.
CO 5	Understanding of underlying mathematics of MEMS devices.

CO-PO Mapping:

Subject	Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
to	CO 1	3	3			2							
	CO 2	3											
6ECU5.1 Introduction MEMS	CO 3	2		1	3	1		3					
6E itroc N	CO 4	2	2			2		1					
<u> </u>	CO 5	1			2	3							2
3: Strongly			gly	2	2: Mo	derat	te		1	: We	ak		

Lecture Plan:

Lecture	Content to be taught
No.	
Lecture 1	Zero lecture
Lecture 2	Introduction and Historical Background.
Lecture 3	Introduction and Historical Background.
Lecture 4	Introduction and Historical Background.
Lecture 5	Scaling Effects. Micro/Nano Sensors, Actuators and Systems overview
Lecture 6	Scaling Effects. Micro/Nano Sensors, Actuators and Systems overview
Lecture 7	Scaling Effects. Micro/Nano Sensors, Actuators and Systems overview
Lecture 8	Scaling Effects. Micro/Nano Sensors, Actuators and Systems overview
Lecture 9	Oxidation, Deposition Techniques
Lecture 10	Oxidation, Deposition Techniques
Lecture 11	Lithography
Lecture 12	Lithography
Lecture 13	Etching
Lecture 14	Micromachining: Surface Micromachining

An Approved Dean, FA & UD

Lecture 15	Micromachining: Surface Micromachining
Lecture 16	Sacrificial layer processes
Lecture 17	Stiction; Bulk Micromachining
Lecture 18	Stiction; Bulk Micromachining
	Isotropic Etching
Lecture 20	Anisotropic Etching
Lecture 21	Wafer Bonding
Lecture 22	Wafer Bonding
	Wafer Bonding
Lecture 24	Mechanics of solids in MEMS/NEMS: Stresses, Strain, Hookes's law
Lecture 25	Mechanics of solids in MEMS/NEMS: Stresses, Strain, Hookes's law
	Mechanics of solids in MEMS/NEMS: Stresses, Strain, Hookes's law
Lecture 27	Poisson effect
	Linear Thermal Expansion
	Bending; Energy methods
	Bending; Energy methods
	Overview of Finite Element Method
	Overview of Finite Element Method
	Overview of Finite Element Method
	Modeling of Coupled Electromechanical Systems
	Spill over classes
	Spill over classes
Lecture 40	Spill over classes

Content delivery method:

- 1. Chalk and Duster
- **2**. PPT
- 3. Hand-outs

Sample assignments:

Assignment 1	Q1.	Discuss three types of fabrication techniques.
Assignment	<u>U</u> 1.	
	Q2.	Discuss Bulk micromachining in detail.
	Q3.	Discuss two types of deposition techniques
Assignment 2	Q1.	Discuss fundamentals of microengineering.
	Q2.	Discuss different types of transducers used in microfabrication.
	Q3.	Discuss actuators and sensor used in MEMS industry.

Amel K. Mathus Approved Dean, FA & UD

6ECU5.2	DEC	Nano Electronics	MM:150	3L:0T:0P	3 credit
---------	-----	------------------	--------	----------	-------------

Introduction to nanotechnology, meso structures, Basics of Quantum Mechanics: Schrodinger equation, Density of States. Particle in a box Concepts, Degeneracy. Band Theory of Solids. Kronig-Penny Model. Brillouin Zones.

Shrink-down approaches: Introduction, CMOS Scaling, The nanoscale MOSFET, Finfets, Vertical MOSFETs, limits to scaling, system integration limits (interconnect issues etc.), Resonant Tunneling Diode, Coulomb dots, Quantum blockade, Single electron transistors, Carbon nanotube electronics, Band structure and transport, devices, applications, 2D semiconductors and electronic devices, Graphene, atomistic simulation.

Text/ Reference Books:

1.	G.W. Hanson, Fundamentals of Nanoelectronics, Pearson, 2009.				
2.	K.E. Drexler, Nanosystems, Wiley, 1992.				
3.	W. Ranier, Nanoelectronics and Information Technology (Advanced Electronic Materialand Novel Devices), Wiley-VCH, 2003.				
4.	J.H. Davies, The Physics of Low-Dimensional Semiconductors, Cambridge University Press, 1998.				
5.	C.P. Poole, F. J. Owens, Introduction to Nanotechnology, Wiley, 2003.				
6.	T.Pradeep,Nano:TheEssentials,McGraw Hill				

Aml K. Mathus Approved

Dean, FA & UD

SEMICONDUCTOR POWER DEVICES: Introduction. Basic characteristics & working of Power Diodes, Diac, Triac, MOSFETs, IGBT, GTO, Power Transistor and SCR- Principle of operation, V-I Characteristics, Turn-On mechanism and its applications

CONVERTERS: Basic concept, Working Principles of Single phase half Wave bridge converter, Single Phase Full Bridge Converter, 3 Phase Bridge Converter.

INVERTERS: Voltage Source Inverter, Current Source Inverter, PWM Control of Voltage Source Converter and applications.

INDUSTRIAL POWER SUPPLIES: Principle of operation of choppers. Step up, Step down and reversible choppers. Chopper control techniques, High frequency electronic ballast, Switch Mode Power Supply: Fly back converter, forward/buck converter, Boost converter and buck-boost converter. Uninterruptible Power Supply.

MOTOR CONTROL: Introduction to speed control of DC motors using phase controlled converters and choppers, Basic idea of speed control of three phase induction motors using voltage and frequency control methods.

STEPPER MOTORS: Principle of operation, Types of stepper motor: Variable reluctance, Permanent magnet and hybrid stepper motors. Brushless DC motor and its control. Induction and dielectric heating control.

- **1.** Power Electronics Principles & Applications, Joseph Vithayathil, TMH, (2010).
- 2. Power Eletronics, M.D.Singh, TMH, (2012).
- **3.** Industrial Electronics And Control, Ttti, TMH (2001)
- 4. Power Electronics: Converters Applications., Mohan, Robbins, Wiley (1995)
- **5.** Power Electronics, Moorthi, Oxford (2005)
- **6.** Elements Of Power Electronics, Krein, Oxford (1998)
- 7. Power Electronics, R.S.Murthy, Pearson (2012)
- **8.** Power Electronics: Circuits, Devices And Applications (2004)

l K. Mathus Approved Dean, FA & UD

9. Industrial Electronics: Thomas E. Kissell, PHI (2004).

10. Power Electronics: Sivanagaraju, Reddy Prasad PHI (2010)

Amel K. Mathus Approved

Dean, FA & UD

6ECU6.2	DEC	High Speed Electronics	MM:150	2L:0T:0P	2 credit	
						uit

Transmission line theory (basics)- crosstalk and non ideal effects; signal integrity: impact of packages, vias, traces, connectors; non-ideal return current paths, high frequency power delivery, methodologies for design of high speed buses; radiated emissions and minimizing system noise; Noise Analysis: Sources, Noise Figure, Gain compression, Harmonic distortion, Inter modulation, Cross-modulation, Dynamic range

Devices: Passive and active, Lumped passive devices (models), Active (models, low vs High frequency)

RF Amplifier Design, Stability, Low Noise Amplifiers, Broadband Amplifiers (and Distributed) Power Amplifiers, Class A, B, AB and C, D E Integrated circuit realizations, Cross-over distortion Efficiency RF power output stages Mixers –Up conversion Down conversion, Conversion gain and spurious response. Oscillators Principles. PLL Transceiver architectures

Printed Circuit Board Anatomy, CAD tools for PCB design, Standard fabrication, Micro via Boards. Board Assembly: Surface Mount Technology, Through Hole Technology, Process Control and Design challenges.

Text/Reference Books:

1.	Stephen H. Hall, Garrett W. Hall, James A. McCall "High-Speed Digital
	System Design:
	A Handbook of Interconnect Theory and Design Practices", August
	2000, Wiley-IEEE Press
2.	Thomas H. Lee, "The Design of CMOS Radio-Frequency Integrated
	Circuits", Cambridge University Press, 2004, ISBN 0521835399.
3.	BehzadRazavi, "RF Microelectronics", Prentice-Hall 1998, ISBN 0-13-
	887571-5.
4.	Guillermo Gonzalez, "Microwave Transistor Amplifiers", 2nd Edition,
	Prentice Hall.
5.	Kai Chang, "RF and Microwave Wireless systems", Wiley.
6.	R.G. Kaduskar and V.B.Baru, Electronic Product design, Wiley India,
	2011

Course Outcome:

Course Code	Course Name	Course Outco me	Details
6ECU6. 2	High Speed Electro nics	CO 1	Develop the understanding of transmission line and its application in high speed electronics.

e K. Mathus Approved Dean, FA & UD

CO 2	Designing of the RF and power amplifier for high speed electronics with low noise and stability.
CO 3	Understand the properties and fundamental limitation with the signal conversion of high speed electronic system.
CO 4	Design and implement printed circuit board using CAD simulation.
CO 5	Design High-speed electronic system using appropriate components.

CO-PO Mapping:

Subject	Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
د cs	CO 1	3	2	2	1	1		1					
High tron	CO 2	2	2	3	1	1							1
16.2 Elec	CO 3	3	2	1	1			1					
6ECU6.2 High Speed Electronics	CO 4	2	2	3	1	3	2	1					1
spe	CO 5	2	2	3	2	2							2
	3:	Stron	gly		2: Mo	odera	te			1: We	ea		

Lecture Plan:

Lecture No.	Content to be taught				
Lecture 1	Zero Lecture				
Lecture 2	2 Introduction of Transmission line.				
Lecture 3	Crosstalk in transmission line.				
Lecture 4	4 Nonideal effects in transmission line.				
Lecture 5	Lecture 5 Analysis of signal integrity.				
Lecture 6	Impact of packages and vias.				
Lecture 7 Effect of traces and connectors.					
Lecture 8	Non-ideal return current paths				

Amel K. Mathus Approved Dean, FA & UD

	High frequency power delivery					
	Methodologies for design of high speed buses					
Lecture 11	Analysis of radiated emissions					
	/inimizing system noise					
	Noise Analysis					
	Inter modulation					
	Cross Modulation					
	Passive and active devices					
	Lumped passive and active device models					
	RF Amplifier Design					
	Stability of RF amplifier design					
	Low Noise Amplifiers					
	Broadband Amplifiers					
	22 Power Amplifiers					
	3 Class A, B power amplifier					
	24 Class AB and C power amplifier					
Lecture 25	5 D E Integrated circuit realizations					
Lecture 26	Cross-over distortion Efficiency					
	Up conversion mixer					
Lecture 28	Down Conversion Mixer					
Lecture 29	Conversion gain and spurious response					
Lecture 30	Oscillators Principles					
	PLL Transceiver architectures					
	Introduction to Printed Circuit Board					
	CAD tools for PCB design					
Lecture 34	Standard fabrication, micro-via boards.					
	Surface Mount Technology					
	Through Hole Technology					
Lecture 37	Process Control and Design challenges					
Lecture 38	Spill-Over Class					
	Spill-Over Class					
Lecture 40	Spill-Over Class					

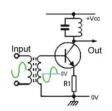
Content delivery method:

- 1. Chalk and Duster
- **2**. PPT
- 3. Hand-outs

Sample Assignments:

Assignme	nt 1								
Q1.	The	characteristic	impedance	of	а	20	metre	length	of

Aml K. Mathur Approved Dean, FA & UD


transmission line is 52 ohm. If 10 meters is cut off, find the impedance.

Q2. Calculate the attenuation due to ohmic losses at 20 GHz for a microstrip line constructed of copper conductor having a width of 2.5 mm on an alumina substrate. Take the characteristic impedance of the line as 50 Ω .

Q3. A 70-Q lossless line has s = 1.6 and 0r = 300°. If the line is 0.6X long, obtain (a) T,ZL,Zin (b) The distance of the first minimum voltage from the load.

Assignment 2

Q1. For the class B power amplifier shown in figure, find the voltage swing of the output signal.

- **Q2.** Which problem may occur as a result of pulse width modulation in audio amplifier and how to overcome it?
- **Q3.** Which component is necessary to drive the loudspeaker in a class D amplifier?

il K. Mathus Approved Dean, FA & UD

6ECU11 DC	Computer Network Lab	MM:75	OL:0T:3P	2 credit	
-----------	----------------------	-------	----------	-------------	--

List of Experiments

1.	PRELIMINARIES: Study and use of common TCP/IP protocols and term
	viz. telnet rlogin ftp, ping, finger, Socket, Port etc.
2.	DATA STRUCTURES USED IN NETWORK PROGRAMMING:
	Representation of unidirectional, Directional weighted and unweighted
	graphs.
3.	ALGORITHMS IN NETWORKS: computation of shortest path for one
	source-one destination and one source –all destination
4.	SIMULATION OF NETWORK PROTOCOLS:
	 Simulation of M/M/1 and M/M/1/N queues.
	Simulation of pure and slotted ALOHA.
	iii. Simulation of link state routing algorithm.
5.	Case study : on LAN Training kit
	i. Observe the behavior & measure the throughput of reliable data
	transfer protocols under various Bit error rates for following DLL
	layer protocols-
	a. Stop & Wait
	b. Sliding Window : Go-Back-N and Selective Repeat
	ii. Observe the behavior & measure the throughput under various
	network load conditions for following MAC layer Protocols
	a. Aloha
	b. CSMA, CSMA/CD & CSMA/CA
	c. Token Bus & Token Ring
6.	Software and hardware realization of the following:
	i. Encoding schemes: Manchester, NRZ.
	ii. Error control schemes: CRC, Hamming code.

Amel K. Mathus Approved Dean, FA & UD

6ECU12	DCC	Antenna and wave	N/N/1·75	OL:OT:3P	2
OLCOIZ	DCC	propagation Lab	101101.75	02.01.35	credit

List of Experiments

Sr. No.	Name of Experiment						
1.	Study the gain pattern, HPBW, FNBW and Directivity of a dipole antenna.						
2.	Measurement of Radiation Pattern, Gain, HPBW of a folded dipole antenna.						
3.	Measurement of Radiation Pattern, Gain, HPBW of a loop antenna						
4.	Measurement of Radiation Pattern, Gain, VSWR, input impedance and reflection coefficient for given Monopole antenna						
5.	Measurement of Radiation Pattern, Gain, VSWR, input impedance and reflection coefficient for given Yagi antennas						
6.	Study of the Radiation Pattern, Gain, HPBW of a horn antenna						
7.	Study of the Radiation Pattern, Gain, HPBW of a reflector antennas						
8.	Study the radiation pattern, gain, VSWR, and input impedance of a rectangular micro-strip patch antenna						
9.	Study the effect of inset feed on the input impedance of a rectangular patch antenna						
10.	Study the effect of ground plane on the radiation pattern of an antenna						
11.	Study antenna designing in CST Microwave Studio						
12.	Design a rectangular microstrip patch antenna using CST MWS						

And K. Mathus Approved Dean, FA & UD

Course Outcome:

Course Code	Course Name	Course Outco me	Details
2	Antenna and wave propagation Lab	CO 1	Develop the understanding of basic antenna characteristics, classification parameters, antenna array fundamentals and the antenna design/ synthesis method.
		CO 2	Identify, analyze different principles and performance parameters of various types of antennas in practice
6ECU12		CO 3	Analyze and design the antenna system for optimum minimization of the interference from ground.
		CO 4	Understand the antenna designing in CST Microwave Studio.
		CO 5	Development and implementation of different real time antenna system applications for the growth of society.

CO-PO Mapping:

Subject	Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
enna Lab	CO 1	3				3	2						3
U U U	CO 2	2	3	1			1						
	CO 3	2	3	3	1								
6ECU12 Ant and wave propagation	CO 4	2				3	2						3
6E	CO 5	2	3	3	2	2	2			2			3
	gly	2: Moderate					1	: We	ak				

Amel K. Mathur Approved Dean, FA & UD

6EC	CU13 DCC Electronics Design Lab MM:75 OL:0T:2P 1 credit							1 credit	
	To design the following circuits, assemble these on bread board and test them.								
Simu	Simulation of these circuits with the help of appropriate software.								
1.	Op-Amp characteristics and get data for input bias current measure the output-offset voltage and reduce it to zero and calculate slew rate.								
2.	Op-A	mp in in	verting	and no	n-invert	ing m	nodes.		
3.	Op-A	mp as so	calar, s	ummer	and volt	age fo	ollower.		
4.	Op-Amp as differentiator and integrator.								
5.	Design LPF and HPF using Op-Amp 741								
6.	Design Band Pass and Band reject Active filters using Op-Amp 741.								
7.	Desi Colp		lators (using C)p-Amp	(i) R(C phase	shift (ii) Ha	rtley (iii)
8.	Desi	gn (i) Asta	able (ii)	Monos	tablemu	ltivibr	rators usi	ng IC-555 tii	mer
9.	Desi	gn Triang	gular &	square	wave ge	nerat	or using !	555 timer.	
10.	Desi	gn Amplii	fier (for	given g	ain) usir	ng Bij	oolar Jun	ction Transis	stor.
11.	Op-Amp characteristics and get data for input bias current measure the output-offsetvoltage and reduce it to zero and calculate slew rate.								
12.	Op-A	mp in in	verting	and no	n-invert	ing m	nodes.		
13.	Op-A	mp as so	calar, s	ummer	and volt	age fo	ollower.		

Aml K. Mathus Approved Dean, FA & UD

Course Outcome:

Course	Course	Course	Details							
Code	Name	Outcome	Details							
	du	CO 1	Designing of different forms of Electronic circuits.							
e	Design	CO 2	Understanding the working of Op-amp and amplifier circuits							
6ECU13	nics Lab	CO 3	Design and understanding of different oscillators.							
61	Electronics Lab	CO 4	Understanding of different filters and multi- vibrators.							
	Ele	CO 5	Designing of different Op-amp based circuits.							

CO-PO Mapping:

Subject	Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
	CO 1	3	2	2	2	3							
13 nics Lab	CO 2	2	2	2	3	3							
	CO 3	2	2	1	3	1							
6ECU ⁻ Electro Design	CO 4	3	2	1	2	1							
	CO 5	3	3	2	2	2							
3: Strongly 2: Moderate 1: Weak													

Approved Dean, FA & UD

6ECU14 DCC/IEC	Power Electronics Lab	MM:75	0L:0T:2P	1 credit
----------------	--------------------------	-------	----------	-------------

List of Experiments

Sr. No.	Name of Experiment						
1.	Study the characteristics of SCR and observe the terminal configuration, measure the breakdown voltage, latching and holding current. Plot V-I characteristics.						
2.	Perform experiment on triggering circuits for SCR. i.e. R triggering, R-C triggering and UJT triggering circuit.						
3.	Study and test AC voltage regulators using triac, antiparallel thyristor sand triac & diac						
4.	Study and obtain the waveforms for single-phase bridge converter.						
5.	Perform experiment on single phase PWM inverter.						
6.	Perform experiment on buck, boost and buck-boost regulators.						
7.	Control speed of a dc motor using a chopper and plot armature voltage versus speed characteristic.						
8.	Control speed of a single-phase induction motor using single phase AC voltage regulator.						
9.	(i) Study single-phase dual converter(ii) Study speed control of dc motor using single-phase dual converter						
10.	Study single-phase cyclo converter.						
11.	Perform experiment on Motor control – open loop & closed loop.						
12.	Design, observe and perform experiment on various type of pulse generation from DSP/ FPGA platform. Perform experiment for PWM inverters and choppers.						

And K. Mathus Approved Dean, FA & UD

Course Outcome:

Course Code	Course Name	Course Outco me	Details							
	_ab	CO 1	Explain characteristics of SCR and use various triggering circuits for it.							
4	lics	CO 2 Describe single release half bridge								
6ECU14	- Electronics	CO 3	Design and perform various pulse generations from DSP on PWM inverter and chopper.							
6E		CO 4	Compare various configurations of DC regulators.							
	Power	CO 5	Explain speed control of dc motor using a chopper and single phase induction motor using AC voltage regulators.							

CO-PO Mapping:

	Subject	Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
	ics	CO 1	3	2	1	2	1							
4	tron	CO 2	3	2	1	1								
6ECU14	ECU14 Electronics Lab	CO 3	3	3	2	3	2							
6E	Power I	CO 4	3	1	1	2								
	Pov	CO 5	3	2	1	2	1							

6ECU20	DECA	MM:50	0L:0T:0P	1 credit
--------	------	-------	----------	-------------

Amel K. Mathus Approved Dean, FA & UD

7ECU1 DCC CMOS Design	MM:150	3L:1T:0P	4 credit	
-----------------------	--------	----------	-------------	--

Review of MOS transistor models, Non-ideal behavior of the MOS Transistor, Transistor as a switch, Inverter characteristics, Integrated **Circuit Layout:** Design Rules, Parasitic, Delay: RC Delay model, linear delay model, logical path efforts, Power, interconnect and Robustness in CMOS circuit layout,

Combinational Circuit Design: CMOS logic families including static, dynamic and dual rail logic. Sequential Circuit Design: Static circuits. Design of latches and Flip-flops.

Text/Reference Books:

1.	N.H.E. Weste and D.M. Harris, CMOS VLSI design: A Circuits and					
	Systems Perspective, 4thEdition, Pearson Education India, 2011.					
2.	Sung-Mo-Kang and Yusuf Leblebici, CMOS Digital Integrated Circuits					
	Analysis & Design, McGraw Hill					
3.	C.Mead and L. Conway, Introduction to VLSI Systems, Addison					
	Wesley, 1979.					
4.	J. Rabaey, Digital Integrated Circuits: A Design Perspective, Prentice					
	Hall India, 1997.					
5.	P. Douglas, VHDL: programming by example, McGraw Hill, 2013.					
6.	L. Glaser and D. Dobberpuhl, The Design and Analysis of VLSI					
	Circuits, Addison					
	Wesley, 1985.					

Course Outcome:

Course Code	Course Name	Course Outco me	Details
	C	CO 1	The basic operation of MOS transistors, impact of scaling and parasitic.
7ECU1	CMOS Design	CO 2	Analysis of Inverter characteristics with required noise margin, propagation delay, power consumption of CMOS
		CO 3	Designing of the layout of complex logic gates by following the design rules.
		CO 4	Understand and calculate the logical effort of

il K. Mathus Approved Dean, FA & UD

	any digital circuit.
CO 5	Design and implement combinational CMOS circuit design including static, dynamic and dual rail logic.

CO-PO Mapping:

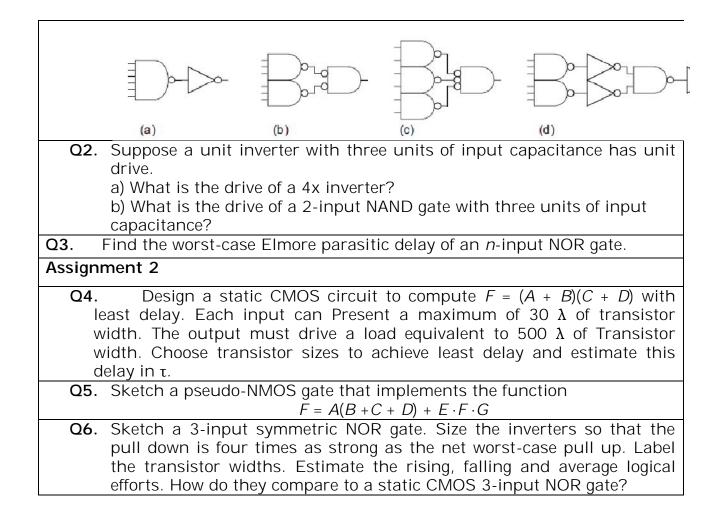
Subject	Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
	CO 1	3	2	1		1	1						
MOS MOS	CO 2	2	3	1									
7ECU1 CMOS Design	CO 3	2	1	3	1	3	1					1	1
DD	CO 4	3	2	1									
	CO 5	3	2	3	2								
	3: 5	Strong	gly	2	2: Mo	derat	te		1	: We	ak		

Lecture Plan:

Lecture No.	Content to be taught
	Zero Lecture
Lecture 2	
Lecture 3	MOS Transistor Models, MOS Device Design Equation
Lecture 4	Non-ideal behavior of the MOS Transistor
Lecture 5	Long Channel I-V Characteristics, Non ideal I-V effects
Lecture 6	DC transfer characteristics
	CMOS technology
Lecture 8	Layout design rules
Lecture 9	CMOS process enhancement
Lecture 10	Manufacturing issues
Lecture 11	Process parameterization
Lecture 12	Introduction to delay and timing optimization
Lecture 13	Transient response
	RC delay model
	RC delay model
Lecture 16	Linear delay model

An Approved Dean, FA & UD

	Linear delay model
	Calculation of delay in logic gates
	Logical efforts of paths
Lecture 20	Iterative solution for sizing
Lecture 21	Timing analysis delay model
Lecture 22	Introduction to sources of power dissipation
Lecture 23	Dynamic Power Consumption
Lecture 24	Static Power consumption
Lecture 25	Energy Delay Optimization
Lecture 26	Low power architectures
Lecture 27	Introduction to wire geometry
Lecture 28	Interconnect modeling
	Interconnect impact
Lecture 30	Interconnect engineering, logical efforts with wire
Lecture 31	Robustness with circuit variability and scaling
Lecture 32	Combinational circuit design with different circuit families
Lecture 33	Combinational circuit design with different circuit families
Lecture 34	Circuits Pitfalls
Lecture 35	Silicon on insulator circuit design, sub-threshold circuit design
	Designing of sequential static circuits
Lecture 37	Designing of sequential static circuits
	Circuit design of latch
Lecture 39	Circuit design of Flip Flop
Lecture 40	SDFF, dual edge triggered, Differential, TSPC Flip Flop


Content delivery method:

- 1. Chalk and Duster
- **2**. PPT
- 3. Hand-outs

Sample Assignments:

Assignment 1
 Q1. Consider four designs of 6-inputs AND gate shown in figure. Develop an expression for the delay of each path if the path electrical effort is H. What design is fastest for A) H = 1 B) H = 5 C) H = 20 Explain your conclusion intuitively.

And K. Mathus Approved Dean, FA & UD

e K. Mathus Approved Dean, FA & UD

7ECU2 DCC	Digital Image & Video Processing	MM:150	3L:1T:0P	4 credit
-----------	-------------------------------------	--------	----------	-------------

Digital Image Fundamentals-Elements of visual perception, image sensing and acquisition, image sampling and quantization, basic relationships between pixels – neighborhood, adjacency, connectivity, distance measures.

Image Enhancements and Filtering-Gray level transformations, histogram equalization and

specifications, pixel-domain smoothing filters – linear and order-statistics, pixel-domain sharpening filters – first and second derivative, two-dimensional DFT and its inverse, frequency domain filters – low-pass and high-pass.

Color Image Processing-Color models–RGB, YUV, HSI; Color transformations-formulation, color complements, color slicing, tone and color corrections; Color image smoothing and sharpening; Color Segmentation.

Image Segmentation- Detection of discontinuities, edge linking and boundary detection, Thresholding – global and adaptive, region-based segmentation.

Wavelets and Multi-resolution image processing- Uncertainty principles of Fourier Transform, Time-frequency localization, continuous wavelet transforms, wavelet bases and multi-resolution analysis, wavelets and Subband filter banks, wavelet packets.

Image Compression-Redundancy–inter-pixel and psycho-visual; Lossless compression – predictive, entropy; Lossy compression- predictive and transform coding; Discrete Cosine Transform; Still image compression standards – JPEG and JPEG-2000.

Fundamentals of Video Coding- Inter-frame redundancy, motion estimation techniques – full search, fast search strategies, forward and backward motion prediction, frame classification – I, P and B; Video sequence hierarchy – Group of pictures, frames, slices, macro-blocks and blocks; Elements of a video encoder and decoder; Video coding standards – MPEG and H.26X.

Video Segmentation- Temporal segmentation-shot boundary detection, hard-cutsand soft-cuts;spatial segmentation – motion-based; Video object detection and tracking.

1.	R.C. Go	nzalez	and	R.E.	Woods,	Digital	Image	Processing,	Second
	Edition,	Pearso	n Edu	ucatio	n 3rd edi	tion 200)8	-	

l K. Mathus Approved Dean, FA & UD

2	R.C. Gonzalez, R.E. Woods and S.L.Eddins, Digital Image Processing using Matlab, McGraw Hill, 2 nd Edition
3.	Anil Kumar Jain, Fundamentals of Digital Image Processing, Prentice Hall of India.2 nd edition 2004
4.	Murat Tekalp , Digital Video Processing" Prentice Hall, 2nd edition 2015

Course Outcome:

Course Code	Course Name	Course Outco me	Details
	00	CO 1	Able to represent the images mathematically and analyse them.
2 & Video	e & Vide ing	CO 2	Understand the Fundamental technologies for digital image compression, analysis, and processing.
7ECU2 Digital Image & Processing		CO 3	Able to enhance required properties of images as per application.
7	tal Ir Pro	CO 4	Develop algorithms for image compression and coding.
	Digi	CO 5	Acquire an appreciation for the image processing techniques and their application to real world problems.

CO-PO Mapping:

Subject	Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
_ 0	CO 1	3	2										
oigital Video sing	CO 2	3	1	2									
es: es	CO 3		2	2	1								
7ECU2 Image Proc	CO 4	1	2	3		1							
	CO 5		2	3	1								
	3: 5	Strong	gly	2	2: Mo	derat	te		1	: We	ak		

Lecture Plan:

Lecture

Content to be taught

Amel K. Mathus Approved Dean, FA & UD

No.	
Lecture 1	Zero Lecture
Lecture 2	Elements of visual perception, image sensing and acquisition
Lecture 3	Image sensing and acquisition, image sampling and quantization
Lecture 4	Basic relationships between pixels – neighbourhood, adjacency,
	connectivity, distance measures.
Lecture 5	Gray level transformations, histogram equalization and
	specifications
Lecture 6	Pixel-domain smoothing filters – linear and order-statistics
Lecture 7	Pixel-domain sharpening filters – first and second derivative,
Lecture 8	Two-dimensional DFT and its inverse
Lecture 9	Frequency domain filters – low-pass and high-pass.
Lecture 10	Color models–RGB, YUV, HSI;
	Color transformations- formulation, color complements
	Color slicing, tone and color corrections
Lecture 13	Color image smoothing and sharpening; Color Segmentation
Lecture 14	Image Segmentation- Detection of discontinuities,
	Edge linking and boundary detection
Lecture 16	Thresholding – global and adaptive, region-based segmentation.
Lecture 17	Thresholding – global and adaptive, region-based segmentation.
Lecture 18	Wavelets and Multi-resolution image processing- Uncertainty
	principles of Fourier Transform, Time-frequency localization
Lecture 19	Continuous wavelet transforms
	Wavelet bases and multi-resolution analysis
	Wavelets and Sub band filter banks, wavelet packets.
	Image Compression-Redundancy-inter-pixel and psycho-visual
	Lossless compression – predictive, entropy
	Lossy compression- predictive and transform coding
	Discrete Cosine Transform
	Still image compression standards – JPEG and JPEG-2000
	Still image compression standards – JPEG and JPEG-2000
	Fundamentals of Video Coding- Inter-frame redundancy
	Motion estimation techniques – full search, fast search strategies
	Forward and backward motion prediction
	Frame classification – I, P and B
Lecture 32	Video sequence hierarchy – Group of pictures, frames, slices,
	macro-blocks and blocks
	Elements of a video encoder and decoder
	Video coding standards – MPEG and H.26X.
	Video Segmentation
Lecture 36	Temporal segmentation-shot boundary detection, hard-cutsand
	soft-cuts
Lecture 37	Temporal segmentation-shot boundary detection, hard-cutsand
	soft-cuts

Amel K. Mathur Approved Dean, FA & UD

Lecture	38 Spatial segmentation – motion-based;
Lecture 3	39 Video object detection and tracking.
Lecture 4	40 Video object detection and tracking.

Content delivery method:

- 1. Chalk and Duster
- **2**. PPT
- 3. Animation

Assignments:

Assignment 1	Q1. Write a function flip-image which takes an image and reflects it in both the horizontal and vertical dimensions.
	Q2. Implement code for histogram equalization submit your code and the output images?
	Q3. Implement code to add and remove the salt-and-pepper noise submit your code and the output image?
Assignment 2	 Q1. Write a function color-image-crop which acts like image-crop but works for color-images Q2. Write a function Gaussian-low pass which takes an integer n and a float variance as arguments and returns the frequency domain representation of a Gaussian low pass filter of size n×n. Your filter should be a Gaussian of variance cantered on the zero spatial frequency?
	Q3. Implement wiener filter apply it to different test images and display the images before and after Wiener filtering.

Amel K. Mathur Approved Dean, FA & UD

7ECU3 DC	Mobile Communication and Network	MM:150	3L:0T:0P	3 credit
----------	-------------------------------------	--------	----------	-------------

Cellular concepts- Cell structure, frequency reuse, cell splitting, channel assignment, handoff, interference, capacity, power control; Wireless Standards: Overview of 2G and 3G cellular standards.

Signal propagation-Propagation mechanism- reflection, refraction, diffraction and scattering, large scale signal propagation and log normal shadowing. Fading channels-Multipath and small scale fading- Doppler shift, statistical multipath channel models, narrowband and wideband fading models, power delay profile, average and rms delay spread, coherence bandwidth and coherence time, flat and frequency selective fading, slow and fast fading, average fade duration and level crossing rate.

Capacity of flat and frequency selective channels. Antennas- Antennas for mobile terminal monopole antennas, PIFA, base station antennas and arrays.

Multiple access schemes-FDMA, TDMA, CDMA and SDMA. Modulation schemes- BPSK, QPSK and variants, QAM, MSK and GMSK, multicarrier modulation, OFDM.

Receiver structure- Diversity receivers- selection and MRC receivers, RAKE receiver, equalization: linear-ZFE and adaptive, DFE. Transmit diversity-Altamonte scheme.

MIMO and space time signal processing, spatial multiplexing, diversity/multiplexing tradeoff. Performance measures- Outage, average snr, average symbol/bit error rate. System examples- GSM, EDGE, GPRS, IS-95, CDMA 2000 and WCDMA.

Text/Reference Books:

1.	WCY Lee, Mobile Cellular Telecommunications Systems, McGraw Hill, 1990.
2.	WCY Lee, Mobile Communications Design Fundamentals, Prentice Hall, 1993
3.	Raymond Steele, Mobile Radio Communications, IEEE Press, New York, 1992.
4.	AJ Viterbi, CDMA: Principles of Spread Spectrum Communications, Addison Wesley, 1995.
5.	VK Garg&JE Wilkes, Wireless & Personal Communication Systems, Prentice Hall, 1996.

il K. Mathus Approved

Dean, FA & UD

Course Outcome:

Course Code	Course Name	Course Outco me	Details
	ation	CO 1	Understand the working principle and able to model, and design mobile communication systems
]3	unica vorks	CO 2	Understand existing mobile networks and future system standards.
7ECU3	Mobile Communication and Networks	CO 3	Apply multiple access techniques and diversity reception techniques in mobile arena
	bile (anc	CO 4	Analyze mobile communication systems for improved performance
	oW	CO 5	Achieve output performance measures of different mobile systems.

CO-PO Mapping:

Subject		Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
L	3	CO 1	3	2	3	3	2							2
3 e catic	orks	CO 2	3	1		1	2		1		1		2	2
7ECU3 Mobile Communication	Networks	CO 3	3	3	1	2		1	2	1			1	1
r > 7	and I	CO 4	2	3	2	3	2					1		1
U U	0	CO 5	2	2	3	3	2			1			2	2
		3: 5	Strong	gly	2	2: Mo	derat	te		1	: We	ak		

Lecture Plan:

Lecture No.	Content to be taught
Lecture 1	Introduction
Lecture 2	Introduction to Cellular concepts
Lecture 3	Cellular concepts
Lecture 4	Cell structure and frequency reuse
Lecture 5	Cell splitting and channel assignment
Lecture 6	Handoff, interference, capacity, power control

Amel K. Mathus Approved Dean, FA & UD

Lecture 7	Wireless Standards: Overview of 2G and 3G cellular standards
Lecture 8	Signal propagation mechanism- reflection, refraction, diffraction
	and scattering,
Lecture 9	Signal propagation mechanism- reflection, refraction, diffraction
	and scattering
	large scale signal propagation and log normal shadowing
Lecture 11	Fading channels-Multipath and small scale fading
Lecture 12	Doppler shift, statistical multipath channel models,
Lecture 13	narrowband and wideband fading models
Lecture 14	power delay profile, average and rms delay spread
Lecture 15	coherence bandwidth and coherence time, flat and frequency
	selective fading
	slow and fast fading
Lecture 17	average fade duration and level crossing rate
Lecture 18	Capacity of flat and frequency selective channels.
Lecture 19	Capacity of flat and frequency selective channels.
	Antennas for mobile terminal monopole antennas
Lecture 21	PIFA, base station antennas and arrays.
Lecture 22	PIFA, base station antennas and arrays.
Lecture 23	Multiple access schemes-FDMA, TDMA, ,
Lecture 24	CDMA and SDMA
Lecture 25	CDMA and SDMA
Lecture 26	Modulation schemes- BPSK
Lecture 27	QPSK and variants
Lecture 28	QAM, MSK and GMSK
Lecture 29	multicarrier modulation and OFDM.
	Receiver structure- Diversity receivers
	MRC receivers, RAKE receiver
Lecture 32	Equalization: linear-ZFE
	Adaptive and DFE
Lecture 34	Transmit diversity-Altamonte scheme
Lecture 35	MIMO and space time signal processing
Lecture 36	spatial multiplexing, diversity/multiplexing tradeoff
Lecture 37	Performance measures- Outage, average SNR
Lecture 38	average symbol/bit error rate
Lecture 39	System examples- GSM, EDGE, GPRS, IS-95
	CDMA 2000 and WCDMA.

Content delivery method:

- 1. Chalk and Duster
- **2**. PPT
- 3. Hand-outs

Amel K. Mathus Approved Dean, FA & UD

Sample assignments:

Assignment 1	Q1. Consider a N-cell reuse pattern (hexagonal							
	geometry) with base stations at the centre of each							
	cell with omni-directional antennas. What would be							
	the D/R ratio required if a minimum value of C/I =							
	18dB must be ensured. Assume path loss exponent							
	n = 3.1 and only tier 1 interferers							
	Q2. Assuming Free space propagation model, If the							
	transmit power is 1000 mW and the received power is							
	10-9 mW, what is the distance between the							
	transmitter and the receiver. The carrier frequency is 1 GHz.							
	Q3. Consider a cellular signal with carrier							
	frequency fc = 900 MHz. Compute the maximum							
	doppler frequency if the transmitter is moving at 60							
	kmph.							
Assignment 2	Q1. Consider a transmitter antenna. The output							
	power of the transmitter amplifier is 30 W and the							
	transmit antenna gain is 15 dB. The feeder attenuation is 5 dB. What is the EIRP (Equivalent							
	Isotropic Radiated Power)?							
	Q2. A cellular system is designed for a receiver							
	sensitivity of -102 dBm. Evaluate the transmitted							
	power needed if the total path loss permitted is 112							
	dB, and a fading margin of 20 dB							
	Q3. Consider a system that uses coherent QPSK							
	modulation and detection scheme with 10 us symbol							
	period for communication. The channel has a							
	coherence time of 5 ms. If 50 symbols are being used							
	for the purpose of channel estimation find the data							
	rate?							

Amel K. Mathus Approved Dean, FA & UD

7ECU4 D	OCC Mixed Signal Design	MM:150	3L:0T:0P	3 credit	
---------	-------------------------	--------	----------	-------------	--

Analog and discrete-time signal processing, introduction to sampling theory; Analog continuous time filters: passive and active filters; Basics of analog discrete-time filters and Z-transform.

Switched-capacitor filters- Non-idealities in switched-capacitor filters; Switched-capacitor filter architectures; Switched-capacitor filter applications.

Basics of data converters; Successive approximation ADCs, Dual slope ADCs, Flash ADCs, Pipeline ADCs, Hybrid ADC structures, High-resolution ADCs, DACs.

Mixed-signal layout, Interconnects and data transmission; Voltage-mode signaling and data transmission; Current-mode signaling and data transmission.

Introduction to frequency synthesizers and synchronization; Basics of PLL, Analog PLLs; Digital PLLs; DLLs.

1.	R. Jacob Baker, CMOS mixed-signal circuit design, Wiley India, IEEE press, reprint 2008.
2.	Behzad Razavi, Design of analog CMOS integrated circuits, McGraw- Hill, 2003.
3.	R. Jacob Baker, CMOS circuit design, layout and simulation, Revised second edition, IEEE press, 2008.
4.	Rudy V. de Plassche, CMOS Integrated ADCs and DACs, Springer, Indian edition, 2005.
5.	Arthur B. Williams, Electronic Filter Design Handbook, McGraw-Hill, 1981.
6.	R. Schauman, Design of analog filters by, Prentice-Hall 1990 (or newer additions).
7.	M. Burns et al., An introduction to mixed-signal IC test and measurement by, Oxford university press, first Indian edition, 2008.

il K. Mathus Approved Dean, FA & UD

7ECU5.1	DEC	Error Correcting Codes	MM:150	3L:0T:0P	3 credit	
---------	-----	------------------------	--------	----------	-------------	--

Linear block codes: Systematic linear codes and optimum decoding for the binary symmetric channel; Generator and Parity Check matrices, Syndrome decoding on symmetric channels; Hamming codes; Weight enumerators and the McWilliams identities; Perfect codes.

Introduction to finite fields and finite rings; factorization of (Xⁿ-1) over a finite field; Cyclic Codes. BCH codes; Idempotents and Mattson-Solomon polynomials; Reed-Solomon codes, Justeen codes, MDS codes, Alterant, Goppa and generalized BCH codes; Spectral properties of cyclic codes.

Decoding of BCH codes: Berlekamp's decoding algorithm, Massey's minimum shift register synthesis technique and its relation to Berlekamp's algorithm. A fast Berlekamp - Massey algorithm. Convolution codes; Wozencraft's sequential decoding algorithm, Fann's algorithm and other sequential decoding algorithms; Viterbi decoding algorithm.

1.	F.J. McWilliams and N.J.A. Slone, The theory of error correcting codes, 1977.
2.	R.E. Balahut, Theory and practice of error control codes, Addison Wesley, 1983.

il K. Mathus **Approved** Dean, FA & UD

7ECU5.2	DEC	Neural Network And		3L:0T:0P	3
72005.2	DLC	Fuzzy Logic Control	101101.150	3L.01.0F	credit

NEUROPHYSIOLOGY: Introduction: Elementary neurophysiology – From neurons to ANNs -Neuron model McCulloch-Pitts model, Hebbian Hypothesis; limitations of single-layered neural networks. Applications Of Neural Networks: Pattern classification, Associative memories, Optimization, Applications in Image Processing-Iris, finger print & face, Applications in decision making. THE PERCEPTRON: The Perceptron and its learning law. Classification of linearly separable patterns. Linear Networks: Adaline - the adaptive linear element. Linear regression. The Wiener-Hopf equation. The Least-Mean-Square (Widrow-Hoff) learning algorithm. Method of steepest descent. Adaline as a linear adaptive filter. A sequential regression algorithm. Multi-Layer Feedforward Neural Networks: Multi-Layer Perceptrons. Supervised Learning. Approximation and interpolation of functions. Back-Propagation Learning law. Fast training algorithms. Applications of multilayer perceptrons: Image coding, Paint-guality inspection, Nettalk. FUZZY LOGIC: Introduction -Uncertainty & precision, Statistics and random process, Uncertainty in information, Fuzzy sets and membership. Membership Functions: Features of membership function. Standard forms and boundaries, Fuzzification, Membership value assignment - Intuition, Neural networks. Fuzzy To Crisp Conversions: Maximum Inference, membership principle. **DEFUZZIFICATION METHODS-** Centroid method, Weighted average method, Meanmax membership. Fuzzy Rule Based Systems: Natural language, linguistic hedges, Rule based system -Canonical rule forms, Decomposition of compound rules, Likelihood and truth qualification Aggregation of Fuzzy rules. Graphical techniques of reference. FUZZY CONTROL SYSTEM- Simple Fuzzy Logic controller, General FLC, Control System Design Problem Control (Decision) Surface, Assumptions in a Fuzzy Control System Design, Special forms of FLC system models, Industrial application: Aircraft Landing Control Problem. Fuzzy Engineering Process Control: Classical Feedback Control, Classical PID Control, Multi-input, Multi-output (MIMO) Control Systems, Fuzzy Statistical Process Control

S.No.	Name of Book/publication/Authors				
	S.N. Sivanandam, S. Sumathi and S.N. Deepa -Introduction to				
	Neural Networks using MATLAB 6.0, Tata McGraw-Hill 2006.				

il K. Mathus Approved Dean, FA & UD

2.	Timothy J. Ross -Fuzzy Logic with Engineering Applications, Third Edition 1995.
3.	Artificial Neural Network, Robert Schalloff, TMH 1997
4.	Fundamental Of Neural Network Architecture And Application, Laurene V. Fausett, Pearson 1993
5.	Neural Network Algorithm And Programing Tech, James A Freeman, Pearson 1991
6.	Neural N/W For Pattern Recognition, Cristopher, M.Bhishop, Oxford 1995
7.	Fuzzy Neuro Approach To Agent Application, Lee ,Raymond S.T., New Age 2008
8.	Fuzzy Logic and Neural Networks: Basic Concept And Application, A Lavala, Chemakesava R., New Age 2012

Course Outcome:

Cours	Cours	Course	
е	е	Outcom	Details
Code	Name	е	
	Networks And Logic Control	CO 1	Discuss the elementary neurophysiology with the study of Neurons and different models & applications for Neural Networks. (K2)
5.2	orks : Cor	CO 2	Describe the perceptron, the linear networks & the Multi-Layer Feed forward Neural Networks(K2).
6ECU5.2	Netw Logic	CO 3	Explain theFuzzy Logics, their uncertainty & precision & the Membership Function. (K6)
¢	Neural Fuzzy	CO 4	Illustrate the Defuzzification Methods & Fuzzy Rule based Systems (K4).
	Ne Fu	CO 5	Examine Fuzzy Control Systems & Fuzzy Engineering Process Control & their applications (K3)

CO-PO Mapping:

Subject	Course Outcom es	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12
al rks rzy c	CO 1	3		2		1							
Fu wo	CO 2	3			2	1							
And	CO 3	3			2	1							

Avil K. Mathus Approved Dean, FA & UD

CO 4	2	3		1						
CO 5	3		2	1						
	3: Stro	ong		2:	Mode	rate	1: W	/eak		

Lecture Plan:

Lecture	Content to be taught
No.	
Lecture 1	Introduction: Elementary neurophysiology
Lecture 2	Neuron model McCulloch-Pitts model
Lecture 3	Hebbian Hypothesis; limitations of single-layered neural networks
Lecture 4	Application in Pattern classification, Associative memories, Optimization
Lecture 5	Applications in Image Processing-Iris, finger print & face
Lecture 6	Applications in decision making
Lecture 7	The Perceptron and its learning law
Lecture 8	Classification of linearly separable patterns
Lecture 9	Adaline - the adaptive linear element, Linear regression.
Lecture 10	The Wiener-Hopf equation. The Least-Mean-Square (Widrow-Hoff) learning algorithm.
Lecture 11	Method of steepest descent. Adaline as a linear adaptive filter. A sequential regression algorithm
Lecture 12	Multi-Layer Perceptrons
	Supervised Learning
Lecture 14	Approximation and interpolation of functions. Back-Propagation Learning law
Lecture 15	Fast training algorithms. Applications of multilayer perceptrons: Image coding,
Lecture 16	Paint-quality inspection, Nettalk.
Lecture 17	Introduction -Uncertainty & precision
Lecture 18	Statistics and random process, Uncertainty in information
Lecture 19	Fuzzy sets and membership
Lecture 20	Features of membership function
Lecture 21	Standard forms and boundaries
Lecture 22	Fuzzification, Membership value assignment – Intuition, Inference
Lecture 23	Neural networks & Maximum Membership Principle
Lecture 24	Neural networks & Maximum Membership Principle

An Approved Dean, FA & UD

Lecture 25	Centroid method						
Lecture 26	Weighted average method						
Lecture 27	Meanmax membership						
Lecture 28	Natural language, linguistic hedges						
Lecture 29	Rule based system -Canonical rule forms, Decomposition of compound						
	rules						
Lecture 30	Decomposition of compound rules						
Lecture 31	Likelihood and truth qualification Aggregation of Fuzzy rules						
Lecture 32	Graphical techniques of reference						
Lecture 33	Simple Fuzzy Logic controller						
Lecture 34	General FLC, Control System Design Problem Control (Decision) Surface						
Lecture 35	General FLC, Control System Design Problem Control (Decision) Surface						
Lecture 36	Assumptions in a Fuzzy Control System Design, Special forms of FLC						
	system models						
Lecture 37	Industrial application: Aircraft Landing Control Problem						
Lecture 38	Classical Feedback Control						
Lecture 39	Classical PID Control, Multi-input, Multi-output (MIMO) Control						
	Systems						
Lecture 40	Fuzzy Statistical Process Control						

Content delivery method: 1. Chalk and Duster

- **2**. PPT
- 3. Animation

Am Approved Dean, FA & UD

7ECU11	DCC	VLSI Design Lab	MM:75	OL:0T:3P	2 credit	
--------	-----	-----------------	-------	----------	-------------	--

List of Experiments

Sr. No.	Name of Experiment							
1.	Design and simulate all the logic gates with 2 inputs using VHDL/Verilog.							
2.	Design and simulate 2-to-4 decoder using VHDL/Verilog.							
3.	Design and simulate 3-to-8 encoder using VHDL/Verilog.							
4.	Design and simulate 8X1 multiplexer using VHDL/Verilog.							
5.	Design and simulate binary to gray converter using VHDL/Verilog.							
6.	Design and simulate 4-bit comparator using VHDL/Verilog.							
7.	Design and simulate half adder and full adder using VHDL (data flow method)/Verilog.							
8.	Design and simulate full adder using VHDL (structural and behavioral method).							
9.	Design and simulate D, T and J-K flip flop using VHDL/Verilog.							
10.	Design a 4- bit parallel Adder using VHDL/Verilog. Obtain its number of gates, area, and speed and power dissipation.							
11.	Design a 2- bit multiplier using VHDL/Verilog. Obtain its number of gates, area, and speed and power dissipation.							
12.	Design a 4- bit Serial in-serial out shift register. Obtain its number of gates, area, and speed and power dissipation.							
13.	Design a 4 bit binary Asynchronous and synchronous counter. Obtain its number of gates, area, and speed and power dissipation.							

Amel K. Mathus Approved Dean, FA & UD

Course Outcome:

Course Code	Course Name	Course Outco me	Details
		CO 1	Develop the basic understanding of different HDL languages for the implementation of digital logics.
7ECU11	VLSI Design Lab	CO 2	Understanding the synthesis and analysis of digital system designs using modern software platform.
		CO 3	Identify analysis and design of different combinational circuits using any HDL language.
		CO 4	Identify analysis and design of different sequential circuits using any HDL language.
		CO 5	Development and implementation of different real time digital system applications for the growth of society.

CO-PO Mapping:

Subject	Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
Lab	CO 1	3				3	2						3
7ECU11 VLSI Design Lá	CO 2	3				3	2						3
	CO 3	2	3	3	1	2							
	CO 4	2	3	3	1	2							
	CO 5	2	3	3	2	2	2			2			3

3: Strongly

2: Moderate 1: Weak

And K. Mathurs Approved Dean, FA & UD

7ECU12	DCC	Optical Fiber Lab	MM:75	0L:0T:2P	1 credit
--------	-----	-------------------	-------	----------	-------------

List of Experiments

Sr. No.	Name of Experiment
1.	To set up Fiber Optic Analog link.
2.	To set up fiber Optic Digital link.
3.	Measurement of Propagation loss and numerical aperture.
4.	Measurement of optical power attenuation in a plastic optical fiber.
5.	Study and measurement of losses in optical fiber
6.	Study and measure characteristics of fiber optic LED's and Laser diode
7.	Finding V-number for a glass fiber(Multimode / single mode fiber)
8.	Measurement of coupling and bending losses in Optical fiber
9.	Fiber Dispersion Measurement
10.	OTDR Measurement of Fiber Length, Attenuation and Splice Loss.
11.	Fiber Misalignment Loss Measurement.
12.	Study of Propagation of light and Refractive index profile in optical fibers.

Amel K. Mathus Approved Dean, FA & UD

7ECU13 DCC	Minor Project	MM:75	0L:0T:2P	1 credit
------------	---------------	-------	----------	-------------

7ECU14	DCC	Practical Training	MM:225	0L:0T:4P	4 credit
--------	-----	--------------------	--------	----------	-------------

7ECU20	DECA	MM:50	OL:0T:0P	1 credit
--------	------	-------	----------	-------------

Amel K. Mathus Approved Dean, FA & UD

8ECU1.1	DEC	Speech and Audio Processing	MM:150	3L:0T:0P	3 credit
---------	-----	--------------------------------	--------	----------	-------------

Introduction- Speech production and modeling - Human Auditory System; General structure of speech coders; Classification of speech coding techniques – parametric, waveform and hybrid ; Requirements of speech codecs –quality, coding delays, robustness.

Speech Signal Processing- Pitch-period estimation, all-pole and all-zero filters, convolution; Power spectral density, periodogram, autoregressive model, autocorrelation estimation.

Linear Prediction of Speech- Basic concepts of linear prediction; Linear Prediction Analysis of non-stationary signals –prediction gain, examples; Levinson-Durbin algorithm; Long term and short-term linear prediction models; Moving average prediction.

Speech Quantization- Scalar quantization–uniform quantizer, optimum quantizer, logarithmic quantizer, adaptive quantizer, differential quantizers; Vector quantization – distortion measures, codebook design, codebook types.

Scalar Quantization of LPC- Spectral distortion measures, Quantization based on reflection coefficient and log area ratio, bit allocation; Line spectral frequency – LPC to LSF conversions, quantization based on LSF. Linear Prediction Coding-LPC model of speech production; Structures of LPC encoders and decoders; Voicing detection; Limitations of the LPC model.

Code Excited Linear Prediction-CELP speech production model; Analysis-bysynthesis; Generic CELP encoders and decoders; Excitation codebook search – state-save method, zero-input zerostate method; CELP based on adaptive codebook, Adaptive Codebook search; Low Delay CELP and algebraic CELP. Speech Coding Standards-An overview of ITU-T G.726, G.728 and G.729standards.

Text/Reference Books:

1.	"Digital Speech" by A.M.Kondoz, Second Edition (Wiley Students_ Edition), 2004.
2.	"Speech Coding Algorithms: Foundation and Evolution of Standardized Coders", W.C. Chu, Wiley Inter science, 2003.

il K. Mathus Approved Dean, FA & UD

8ECU1.2	DEC	Artificial intelligence	MM:150	3L:0T:0P	3 credit
---------	-----	-------------------------	--------	----------	-------------

Introduction to Artificial Intelligence:

Intelligent Agents, State Space Search, Uninformed Search, Informed Search, Two Players Games, Constraint Satisfaction Problems.

Knowledge Representation:

Knowledge Representation And Logic, Interface in Propositional Logic, First Order Logic, Reasoning Using First Order Logic, Resolution in FOPL

KNOWLEDGE ORGANIZATION:

Rule based System, Semantic Net, Reasoning in Semantic Net Frames, Planning **KNOWLEDGE SYSTEMS**:

KNUWLEDGE SYSTEMS:

Rule Based Expert System, Reasoning with Uncertainty, Fuzzy Reasoning

KNOWLEDGE ACQUISITION:

Introduction to Learning, Rule Induction and Decision Trees, Learning Using neural Networks, Probabilistic Learning Natural Language Processing

Text/Reference Books:

1.	Elaine Rich and Kevin Knight, Artificial Intelligence 3/e, TMH (1991)
2.	Padhy: Artificial Intelligence & Intelligent Systems, Oxford (2005)
3.	James A Anderson, An introduction to Neural Networks. Bradford Books 1995
4.	Dan. W Patterson, Artificial Intelligence and Expert Systems, PHI 1990
5.	Kumar Satish, "Neural Networks" Tata Mc Graw Hill 2004
6.	S. Rajsekaran & G.A. Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis and Applications" Prentice Hall of India. 2006
7.	Siman Haykin,"Neural Netowrks" Prentice Hall of India 1990
8.	Artificial Intelligence, Kaushik, cengage learning

Course Outcome:

Course Code	Course Name	Course Outcom e	Details
8ECU1.2 Artificial	Artificial itelligence	CO 1	Generalise the basic introduction to Artificial Intelligence. (K5)
		CO 2	Deduce the knowledge representation & Logic. (K4)
	<u> </u>	CO 3	Interpret the knowledge organization in

l K. Mathus Approved Dean, FA & UD

	detail. (K3)
CO 4	Illustrate the different knowledge systems of artificial intelligence. (K4)
CO 5	Investigate the study of knowledge acquisition for Learning & processing. (K4)

CO-PO Mapping:

Subject	Course Outcom es	РО 1	РО 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
	CO 1	3	2		1								
.2 ial nce	CO 2	1	3	2									
8ECU1.2 Artificial Intelligence	CO 3	3	2	1									
8E Ari Inte	CO 4	2		3	1								
	CO 5	1			3	2							
	•	3: Str	ongly		2:	Mode	rate		1: V	/eak			

Lecture Plan:

Lecture	Content to be taught
No.	
Lecture 1	Intelligent Agents
Lecture 2	State Space Search
Lecture 3	Uninformed Search
Lecture 4	Informed Search
Lecture 5	Informed Search
Lecture 6	Two Players Games
Lecture 7	Two Players Games
Lecture 8	Constraint Satisfaction Problems
Lecture 9	Constraint Satisfaction Problems
Lecture 10	Knowledge Representation And Logic
Lecture 11	Interface in Propositional Logic
Lecture 12	First Order Logic
Lecture 13	Reasoning Using First Order Logic
Lecture 14	Rule based System
Lecture 15	Rule based System
Lecture 16	Semantic Net

Amel K. Mathus Approved Dean, FA & UD

Lecture 17	Semantic Net					
Lecture 18	Reasoning in Semantic Net Frames					
Lecture 19	Reasoning in Semantic Net Frames					
Lecture 20	Reasoning in Semantic Net Frames					
Lecture 21						
Lecture 22	U U					
Lecture 23	ů.					
	Programmable parallel ports.					
	Programmable parallel ports.					
Lecture 26	Interfacing microprocessor to keyboard and alphanumeric					
	displays.					
Lecture 27	Interfacing microprocessor to keyboard and alphanumeric					
	displays.					
Lecture 28	Interfacing microprocessor to keyboard and alphanumeric					
Locturo 20	displays. Memory interfacing and Decoding					
	Memory interfacing and Decoding					
	DMA controller					
	DMA controller					
	Introduction to Learning					
	Introduction to Learning					
	Rule Induction and Decision Trees					
	Rule Induction and Decision Trees					
	Learning Using neural Networks					
	Learning Using neural Networks					
Lecture 39	Probabilistic Learning Natural Language Processing					
Lecture 40	Probabilistic Learning Natural Language Processing					

Content delivery method:

- 1. Chalk and Duster
- **2**. PPT
- 3. Animation

And K Mathus Approved Dean, FA & UD

8ECU2.1 DEC Adaptive Signal Processing	MM:150	3L:0T:0P	3 credit
---	--------	----------	-------------

General concept of adaptive filtering and estimation, applications and motivation, Review of probability, random variables and stationary random processes, Correlation structures, properties of correlation matrices.

Optimal FIR (Wiener) filter, Method of steepest descent, extension to complex valued The LMS algorithm (real, complex), convergence analysis, weight error correlation matrix, excess mean square error and mis-adjustment Variants of the LMS algorithm: the sign LMS family, normalized LMS algorithm, block LMS and FFT based realization, frequency domain adaptive filters, Sub-band adaptive filtering.

Signal space concepts - introduction to finite dimensional vector space theory, subspace, basis, dimension, linear operators, rank and nullity, inner product space, orthogonality, Gram-Schmidt orthogonalization, concepts of orthogonal projection, orthogonal decomposition of vector spaces.

Vector space of random variables, correlation as inner product, forward and backward projections, Stochastic lattice filters, recursive updating of forward and backward prediction errors, relationship with AR modeling, joint process estimator, gradient adaptive lattice.

Introduction to recursive least squares (RLS), vector space formulation of RLS estimation, pseudo-inverse of a matrix, time updating of inner products, development of RLS lattice filters, RLS transversal adaptive filters. Advanced topics: affine projection and subspace based adaptive filters, partial update algorithms, QR decomposition and systolic array.

Text/Reference Books:

1.	S. Haykin, Adaptive filter theory, Prentice Hall, 1986.
2.	C.Widrow and S.D. Stearns, Adaptive signal processing, Prentice Hall, 1984.

Ail K. Mathus Approved

Dean, FA & UD

8ECU2.2 DEC	Wavelets	MM:150	3L:0T:0P	3 credit
-------------	----------	--------	----------	-------------

Introduction to time frequency analysis; the how, what and why about wavelets, Short-time Fourier transform, Wigner-Ville transform.; Continuous time wavelet transform, Discrete wavelet transform, tiling of the time-frequency plane and wave packet analysis, Construction of wavelets.

Multiresolution analysis. Introduction to frames and biorthogonal wavelets, Multirate signal processing and filter bank theory, Application of wavelet theory to signal de-noising, image and video compression, multi-tone digital communication, transient detection.

Text/Reference Books:

1.	Y.T. Chan, Wavelet Basics, Kluwer Publishers, Boston, 1993.
2.	I. Daubechies, Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992.
3.	C. K. Chui, An Introduction to Wavelets, Academic Press Inc., New York, 1992.
4.	Gerald Kaiser, A Friendly Guide to Wavelets, Birkhauser, New York, 1995.
5.	P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall, New Jersey, 1993.
6.	A.N. Akansu and R.A. Haddad, Multiresolutionsignal Decomposition: Transforms, Subbands and Wavelets, Academic Press, Oranld, Florida, 1992.
7.	B. Boashash, Time-Frequency signal analysis, In S.Haykin, (editor), Advanced Spectral Analysis, pages 418517. Prentice Hall, New Jersey, 1991.

il K. Mathus Approved Dean, FA & UD

8ECU3.1 DEC Wireless Sense Networks	MM:150	3L:0T:0P	3 credit
--	--------	----------	-------------

Introduction to Sensor Networks, unique constraints and challenges, Advantage of Sensor Networks, Applications of Sensor Networks, Types of wireless sensor networks Mobile Ad-hoc Networks (MANETs) and Wireless Sensor Networks, Enabling technologies for Wireless Sensor Networks.

Issues and challenges in wireless sensor networks Routing protocols, MAC protocols: Classification of MAC Protocols, S-MAC Protocol, B-MAC protocol, IEEE 802.15.4 standard and ZigBee, Dissemination protocol for large sensor network. Data dissemination, data gathering, and data fusion; Quality of a sensor network; Real-time traffic support and security protocols.

Design Principles for WSNs, Gateway Concepts Need for gateway, WSN to Internet Communication, and Internet to WSN Communication.

Single-node architecture, Hardware components & design constraints, Operating systems and execution environments, introduction to TinyOS and nesC.

Text/Reference Books:

1.	Waltenegus Dargie, Christian Poellabauer, "Fundamentals Of Wireless Sensor Networks Theory And Practice", By John Wiley & Sons Publications, 2011.
2.	Sabrie Soloman, "Sensors Handbook" by McGraw Hill publication. 2009.
3.	Feng Zhao, Leonidas Guibas, "Wireless Sensor Networks", Elsevier Publications,2004.
4.	Kazem Sohrby, Daniel Minoli, "Wireless Sensor Networks": Technology, Protocols and Applications, Wiley-Inter science.
5.	Philip Levis, And David Gay "TinyOS Programming" by Cambridge University Press 2009.

il K. Mathus Approved

Dean, FA & UD

8ECU3.2 DEC

Introduction: Sources of Approximations, Data Error and Computational, Truncation Error and Rounding Error, Absolute Error and Relative Error, Sensitivity and Conditioning, Backward Error Analysis, Stability and Accuracy.

Computer Arithmetic: Floating Point Numbers, Normalization, Properties of Floating Point System, Rounding, Machine Precision, Subnormal and Gradual Underflow, Exceptional Values, Floating-Point Arithmetic, Cancellation.

System of liner equations: Linear Systems, Solving Linear Systems, Gaussian elimination, Pivoting, Gauss-Jordan, Norms and Condition Numbers, Symmetric Positive Definite Systems and Indefinite System, Iterative Methods for Linear Systems Linear least squares: Data Fitting, Linear Least Squares, Normal Equations Method, Orthogonalization Methods, QR factorization, Gram-Schmidt Orthogonalization, Rank Deficiency, and Column Pivoting Eigenvalues and singular values: Eigen values and Eigenvectors, Methods for Computing All Eigen values, Jacobi Method, Computing Selected Eigen values, Singular Methods for Values Decomposition, Application of SVD

Nonlinear equations: Fixed Point Iteration, Newton's Method, Inverse Interpolation Method Optimization: One-Dimensional Optimization, Multidimensional Unconstrained Optimization, Nonlinear Least Squares Interpolation: Purpose for Interpolation, Choice of Interpolating, Function, Polynomial Interpolation, Piecewise Polynomial Interpolation Numerical Integration And Differentiation: Quadrature Rule, Newton-Cotes Rule, Gaussian Quadrature Rule, Finite Difference Approximation.

Initial Value Problems for ODES, Euler's Method, Taylor Series Method, Runga-Kutta Method, Extrapolation Methods, Boundary Value Problems For ODES, Finite Difference Methods, Finite Element Method, Eigen value Problems Partial Differential Equations, Time Dependent Problems, Time Independent Problems, Solution for Sparse Linear Systems, Iterative Methods, Fast Fourier Transform, FFT Algorithm, Limitations, DFT, Fast polynomial Multiplication, Wavelets, Random Numbers And Simulation, Stochastic Simulation, Random Number Generators, Quasi-Random Sequences.

Text/ Reference Books:

Heath Michael T., "Scientific Computing: An Introductory Survey", McGraw-Hill, 2nd Ed., 2002.
Press William H., Saul A. Teukolsky, Vetterling William T and Brian P. Flannery, "Numerical Recipes: The Art of Scientific Computing",

il K. Mathus Ăpproved Dean, FA & UD

	Cambridge University Press, 3rd Ed., 2007
3.	Xin-she Yang (Ed.)., "Introduction To Computational Mathematics", World Scientific Publishing Co., 2nd Ed., 2008.
0.	Scientific Publishing Co., 2nd Ed., 2008.
4	Kiryanov D. and Kiryanova E., "Computational Science", Infinity Science
	Press, 1st Ed., 2006
5	Quarteroni, Alfio, Saleri, Fausto, Gervasio and Paola, "Scientific
0.	Quarteroni, Alfio, Saleri, Fausto, Gervasio and Paola, "Scientific Computing With MATLAB And Octave", Springer, 3rd Ed., 2010

8ECU13	DCC	Seminar	MM:225	OL:OT:4P	4 credit
--------	-----	---------	--------	----------	-------------

8ECU14 I	DCC	Project	MM:525	3L:0T:18P	12 credit
----------	-----	---------	--------	-----------	--------------

8ECU20	DECA	MM:50	OL:OT:OP	1 credit
--------	------	-------	----------	-------------

Approved Dean, FA & UD